• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

TECHNO-ECONOMIC ANALYSIS OF THE HYDROGEN SUPPLY CHAIN : A CASE STUDY OF THE SWEDISH INDUSTRY / TEKNISK-EKONOMISK ANALYS AV VÄTGASFÖRSÖRJNINGSKEDJAN: : EN FALLSTUDIE AV DEN SVENSKA INDUSTRIN

Dautel, Jan Lukas January 2023 (has links)
The European Energy system is currently transitioning towards a reduced use of fossil fuels and increasing use of renewable energy. Hydrogen as energy carrier for renewable electricity has a potential to play a significant role in this transition. It can be stored and transported in its gaseous or liquid state, and utilized in industries that require highprocess heat, which makes them difficult to decarbonize. Further, hydrogen storage canbe employed to store over‐produced renewable electricity in large scale and for long periods of time. This research aims to develop a methodology to conduct a layout and dispatch optimization for utilizing locally produced hydrogen. The objective is to find the least cost supply pathway for a defined demand. In this case study, hydrogen is produced by water electrolysis supplied by the local electricity grid and renewable electricity, such as solar PV, onshore and offshore wind turbines. The scope is limited to gaseous hydrogen thereby the distribution is also limited to pipelines or road trucks. The optimized supplychain comprises four main stages: I) electricity generation and storage; II) hydrogen production; III) hydrogen compression and storage; IV) hydrogen transportation to the end consumer. It results in the system's optimum hourly dispatch schedule and a proposed least‐cost layout. The developed methodology is finally applied to an industrial case study in Sweden, for which scenarios with varying boundary conditions are tested. The least cost supply chain for the case study resulted in a system solely supplied with electricity purchased from the grid, a PEM electrolyzer, a hydrogen storage in a Lined Rock Cavern, and hydrogen transport via pipeline. The lowest Levelized Cost of Hydrogen from electricity purchase until delivery is 5.17 EUR/kgH2. The study concludes that there is no one optimum solution for all and the constraints of the optimization problem need to be evaluated case by case.The study further highlights that intermittency and peaks of both electricity availability and hydrogen demand can lead to an increase in system cost owing to the oversizing and storage needs. / Det europeiska energisystemet är för närvarande i en övergångsprocess mot en minskande användning av fossila bränslen och en ökande användning av förnybar energi. Vätgas som energibärare för förnybar el har potential att spela en viktig roll i denna övergång. Vätgas kan lagras och transporteras i gasform eller flytande form, och användas i industrier som kräver hög processvärme vars koldioxidutsläpp därför är svåra att minska. Vidare kan vätgaslagring användas för att lagra överproducerad förnybar el istor skala och under långa perioder. Denna forskning syftar till att utveckla en metod för layout och distributions optimering för utnyttjandet av lokalt producerad vätgas. Målet är att hitta den minst kostsamma försörjningsvägen för en definierad efterfrågan. I den här fallstudien produceras vätgas genom vattenelektrolys som försörjs av det lokala elnätet och förnybar el, t.ex. solceller, vindkraftverk på land och till havs. Omfattningen är begränsad till gasformig vätgas och därmed är distributionen också begränsad till rörledningar eller lastbilar. Den optimerade försörjningskedjan består av fyra huvudsteg: I) elproduktion och lagring, II) vätgasproduktion, III) komprimering och lagring av vätgas, IV) transport av vätgas till slutkonsumenten. Metodens output är systemets optimala timplan och ett förslag till layout med den lägsta kostnaden.  Den utvecklade metoden tillämpas slutligen i en industriell fallstudie i Sverige, för vilken scenarier med varierande randvillkor testas. Den minst kostsamma försörjningskedjan för fallstudien resulterade i ett system som enbart försörjs med el som köps från nätet, en PEM‐elektrolyser, ett magasin för vätgaslagring i ett fodrat bergrum och vätgastransport via en rörledning. Den lägsta Levelized Cost för vätgas från el inköp till leverans är 5,17EUR/ kgH2. I studien dras slutsatsen att det inte finns någon optimal lösning i allmänhet och att begränsningarna i optimeringsproblemet måste utvärderas från fall till fall. Studien belyser vidare att ostadighet och toppar i både eltillgången och efterfrågan på vätgas kan leda till en ökning av systemkostnaderna på grund av överdimensionering och lagringsbehov.
2

Hydrogen Pipeline Infrastructure Design for Germany in 2045

von Mikulicz-Radecki, Flora Marianne January 2023 (has links)
Germany’s commitment to carbon neutrality by 2045 underscores the need for climate action, with hydrogen’s multiple uses in industry, transport, and energy offering a viable solution. Efficient retrofitting of the extensive natural gas pipeline network can enable hydrogen to be transported from supply to demand centers. The aim of this study is to develop a hydrogen pipeline network strategy for Germany in 2045 that is consistent with carbon neutrality goals while minimizing associated costs. Using a single-period deterministic Mixed Integer Linear Programming (MILP) approach, the focus is on estimating peak-hour transport demand derived from the spatial distribution of demand and supply. This estimation is based on openly available data from the Germany Energy Agency (dena) pilot study on carbon neutrality. The methodology aims to allocate hydrogen energy flows along existing pipelines through a retrofitting approach. The base scenario is derived from the projected hydrogen demand and supply for a carbon-neutral Germany in 2045, as estimated in the dena pilot study. To explore different possibilities, a sensitivity analysis compares five different demand scenarios. Each scenario examines different hard-to-abate subsectors that have limited options for decarbonization. Evaluating the routes and utilization rates across the pipeline network provides insights into the feasibility, with certain routes, particularly those originating in the north, emerging as key. The majority of pipelines in the network have low utilization rates below 25% in peak hours, which may indicate economic infeasibility or the need for alternative transport strategies. In addition, a cost of avoided emissions analysis weighs scenario-specific emission reductions against network costs. Of particular note is the network connecting CHP plants and energy-intensive industries, which appears to strike an optimal balance in terms of costs of avoided emissions and utilization rate in peak hours. Nevertheless, the study does not consider physical flow calculations, so further validation is required in this respect. The potential of the methodology, however, liesin its ability to quickly assess different scenarios and provide valuable insights into economic, environmental, and social impacts. / Tysklands åtagande om koldioxidneutralitet senast 2045 understryker behovet av klimatåtgärder, och vätgasens många användningsområden inom industri, transport och energi erbjuder en hållbar lösning. Effektiv eftermontering av det omfattande naturgasledningsnätet kan göra det möjligt att transportera vätgas från utbuds- till efterfrågecentra. Syftet med denna studie är att utveckla en strategi för vätgasnätet i Tyskland 2045 som är förenlig med målen för koldioxidneutralitet och samtidigt minimerar de tillhörande kostnaderna. Med hjälp av en deterministisk MILP-metod (Mixed Integer Linear Programming) för en enda period ligger fokus på att uppskatta efterfrågan på transporter under maxtimmar utifrån den rumsliga fördelningen av efterfrågan och utbud. Denna uppskattning baseras på öppet tillgängliga data från denas pilotstudie om koldioxidneutralitet. Metoden syftar till att fördela vätgasenergiflöden längs befintliga rörledningar genom en eftermonteringsstrategi. Det grundläggande scenariot härleds från den beräknade efterfrågan och tillgången på vätgas för ett koldioxidneutralt Tyskland 2045, enligt uppskattningar i dena-pilotstudien. För att utforska olika möjligheter jämförs fem olika efterfrågescenarier i en känslighetsanalys. Varje scenario undersöker olika delsektorer som är svåra att minska och som har begränsade alternativ för utfasning av fossila bränslen. Utvärderingen av sträckningarna och utnyttjandegraden i rörledningsnätet ger insikter om genomförbarheten, där vissa sträckningar, särskilt de med ursprung i norr, framstår som viktiga. Majoriteten av rörledningarna i nätverkethar låga nyttjandegrader under 25% under rusningstid, vilket kan indikera ekonomisk ogenomförbarhet eller behovet av alternativa transportstrategier. Dessutom väger en kostnads-/nyttoanalys av utsläpp scenariospecifika utsläppsminskningar mot nätverkskostnader. Särskilt värt att notera är det nätverk som förbinder kraftvärmeverk och energiintensiva industrier, vilket verkar ge en optimal balans när det gäller kostnader för utsläpp och nyttjandegrad. Studien tar dock inte hänsyn till fysiska flödesberäkningar, så ytterligare validering krävs i detta avseende. Metodens potential ligger dock i dess förmåga att snabbt bedöma olika scenarier och ge värdefulla insikter om ekonomiska, miljömässiga och sociala effekter.

Page generated in 0.0733 seconds