Return to search

Sun Tracking System

Solar energy is a clean energy source which has a minimal impact on the environment than other forms of energy. Solar energy is now widely used in a variety of applications. Although solar energy is widely used, the efficiency of converting solar energy into electricity is insufficient since most solar panels are installed at a fixed angle and the fixed solar panels do not aim directly towards the sun due to the earth’s constant motion. Solar panels are very expensive for families or businesses that consume more energy than usual, as they require several solar panels to generate enough power. The main objective of this project is to build a working model so that to increase the efficiency of power output taken from solar panel by continuously tracking the sun’s rays through out the day and aligns the solar panel orthogonal to the sun. To develop a model that benefits people by producing more solar energy with fewer solar panels. In order to overcome this problem we come up with a solution through Arduino Uno system which consists of four LDR sensors which are responsible for the detection of the light intensity of the sun’s rays. Two micro servo motors are used for movement of the solar panel in azimuth and elevation direction since it is a dual axis tracking system. A solar panel is the core part we use in this model for the conversion of solar energy into electrical energy. The LCD displays shows the power output of the solar panel. The proposed system is a dual axis tracking system that actively tracks solar radiation and adjusts the panel so that the sun’s rays are perpendicular to it, maximizing the solar panel’s power output. The LCD display shows the power output of the solar panel. By this project, we can say that dual axis tracking system we built can track the sun’s rays and increases the power output of solar panel. The manual effort for changing the solar panel according to the sun position can be avoided.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:bth-23262
Date January 2022
CreatorsDandu, Sai Charan Reddy, Sarla, Anish
PublisherBlekinge Tekniska Högskola
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds