Return to search

Marquage fluorescent des protéines pour étudier les enzymes protéolytiques solubles et immobilisées par la cartographie peptidique électrophorétique

La cartographie peptidique est une méthode qui permet entre autre d’identifier les modifications post-traductionnelles des protéines. Elle comprend trois étapes : 1) la protéolyse enzymatique, 2) la séparation par électrophorèse capillaire (CE) ou chromatographie en phase liquide à haute performance (HPLC) des fragments peptidiques et 3) l’identification de ces derniers. Cette dernière étape peut se faire par des méthodes photométriques ou par spectrométrie de masse (MS). Au cours de la dernière décennie, les enzymes protéolytiques immobilisées ont acquis une grande popularité parce qu’elles peuvent être réutilisées et permettent une digestion rapide des protéines due à un rapport élevé d’enzyme/substrat. Pour étudier les nouvelles techniques d’immobilisation qui ont été développées dans le laboratoire du Professeur Waldron, la cartographie peptidique par CE est souvent utilisée pour déterminer le nombre total de peptides détectés et leurs abondances. La CE nous permet d’avoir des séparations très efficaces et lorsque couplée à la fluorescence induite par laser (LIF), elle donne des limites de détection qui sont 1000 fois plus basses que celles obtenues avec l’absorbance UV-Vis. Dans la méthode typique, les peptides venant de l’étape 1) sont marqués avec un fluorophore avant l’analyse par CE-LIF. Bien que la sensibilité de détection LIF puisse approcher 10-12 M pour un fluorophore, la réaction de marquage nécessite un analyte dont la concentration est d’au moins 10-7 M, ce qui représente son principal désavantage. Donc, il n’est pas facile d’étudier les enzymes des peptides dérivés après la protéolyse en utilisant la technique CE-LIF si la concentration du substrat protéique initial est inférieure à 10-7 M. Ceci est attribué à la dilution supplémentaire lors de la protéolyse. Alors, afin d’utiliser le CE-LIF pour évaluer l’efficacité de la digestion par enzyme immobilisée à faible concentration de substrat,nous proposons d’utiliser des substrats protéiques marqués de fluorophores pouvant être purifiés et dilués.
Trois méthodes de marquage fluorescent de protéine sont décrites dans ce mémoire pour étudier les enzymes solubles et immobilisées. Les fluorophores étudiés pour le marquage de protéine standard incluent le naphtalène-2,3-dicarboxaldéhyde (NDA), la fluorescéine-5-isothiocyanate (FITC) et l’ester de 6-carboxyfluorescéine N-succinimidyl (FAMSE). Le FAMSE est un excellent réactif puisqu’il se conjugue rapidement avec les amines primaires des peptides. Aussi, le substrat marqué est stable dans le temps. Les protéines étudiées étaient l’-lactalbumine (LACT), l’anhydrase carbonique (CA) et l’insuline chaîne B (INB). Les protéines sont digérées à l’aide de la trypsine (T), la chymotrypsine (CT) ou la pepsine (PEP) dans leurs formes solubles ou insolubles. La forme soluble est plus active que celle immobilisée. Cela nous a permis de vérifier que les protéines marquées sont encore reconnues par chaque enzyme. Nous avons comparé les digestions des protéines par différentes enzymes telles la chymotrypsine libre (i.e., soluble), la chymotrypsine immobilisée (i.e., insoluble) par réticulation avec le glutaraldéhyde (GACT) et la chymotrypsine immobilisée sur billes d’agarose en gel (GELCT). Cette dernière était disponible sur le marché. Selon la chymotrypsine utilisée, nos études ont démontré que les cartes peptidiques avaient des différences significatives selon le nombre de pics et leurs intensités correspondantes. De plus, ces études nous ont permis de constater que les digestions effectuées avec l’enzyme immobilisée avaient une bonne reproductibilité. Plusieurs paramètres quantitatifs ont été étudiés afin d’évaluer l’efficacité des méthodes développées. La limite de détection par CE-LIF obtenue était de 3,010-10 M (S/N = 2,7) pour la CA-FAM digérée par GACT et de 2,010-10 M (S/N = 4,3) pour la CA-FAM digérée par la chymotrypsine libre. Nos études ont aussi démontrées que la courbe d’étalonnage était linéaire dans la région de travail (1,0×10-9-1,0×10-6 M) avec un coefficient de corrélation (R2) de 0,9991. / Peptide mapping is a routine method for identifying post-translational modifications of proteins. It involves three steps: 1) enzymatic proteolysis, 2) separation of the peptide fragments by capillary electrophoresis (CE) or high performance liquid chromatography (HPLC), 3) identification of the peptide fragments by photometric methods or mass spectrometry (MS). During the past decade, immobilized enzymes for proteolysis have been gaining in popularity because they can be reused and they provide fast protein digestion due to the high ratio of enzyme-to-substrate. In order to study new immobilization techniques developed in the Waldron laboratory, peptide mapping by CE is frequently used, where the total number of peptides detected and their abundance are related to enzymatic activity. CE allows very high resolution separations and, when coupled to laser-induced fluorescence (LIF), provides excellent detection limits that are 1000 times lower than with UV-Vis absorbance. In the typical method, the peptides produced in step 1) above are derivatized with a fluorophore before separation by CE-LIF. Although the detection sensitivity of LIF can approach 10 12 M for a highly efficient fluorophore, a major disadvantage is that the derivatization reaction requires analyte concentrations to be approx. 10 7 M or higher. Therefore, it is not feasible to study enzymes using CE-LIF of the peptides derivatized after proteolysis if the initial protein substrate concentration is <10-7 M because additional dilution occurs during proteolysis. Instead, to take advantage of CE-LIF to evaluate the efficiency of immobilized enzyme digestion of low concentrations of substrate, we propose using fluorescently derivatized protein substrates that can be purified then diluted.
Three methods for conjugating fluorophore to protein were investigated in this work as a means to study both soluble and immobilized enzymes. The fluorophores studied for derivatization of protein standards included naphthalene-2,3-dicarboxaldehyde (NDA), fluoresceine-5-isothiocyanate (FITC) and 6-carboxyfluorescein N-succinimide ester (FAMSE). The FAMSE was found to be an excellent reagent that conjugates quickly with primary amines and the derivatized substrate was stable over time. The studied substrates were -lactalbumin (LACT), carbonic anhydrase (CA) and insulin chain-B (INB). The CE-LIF peptide maps were generated from digestion of the fluorescently derivatized substrates by trypsin (T), chymotrypsin (CT) or pepsin (PEP), either in soluble or insoluble forms. The soluble form of an enzyme is more active than the immobilized form and this allowed us to verify that the conjugated proteins were still recognized as substrates by each enzyme. The digestion of the derivatized substrates with different types of chymotrypsin (CT) was compared: free (i.e., soluble) chymotrypsin, chymotrypsin cross-linked with glutaraldehyde (GACT) and chymotrypsin immobilized on agarose gel particles (GELCT), which was available commercially. The study showed that, according to the chymotrypsin used, the peptide map would vary in the number of peaks and their intensities. It also showed that the digestion by immobilized enzymes was quite reproducible. Several quantitative parameters were studied to evaluate the efficacy of the methods. The detection limit of the overall method (CE-LIF peptide mapping of FAM-derivatized protein digested by chymotrypsin) was 3.010-10 M (S/N = 2.7) carbonic anhydrase using insoluble GACT and 2.010-10 M (S/N = 4.3) CA using free chymotrypsin. Our studies also showed that the standard curve was linear in the working region (1.0×10-9-1.0×10-6 M) with a correlation coefficient (R2) of 0.9991.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMU.1866/4510
Date06 1900
CreatorsGan, Shao MIng
ContributorsWaldron, Karen C.
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageFrench
Detected LanguageFrench
TypeThèse ou Mémoire numérique / Electronic Thesis or Dissertation

Page generated in 0.0056 seconds