Return to search

Problèmes variationnels liés à l'aire

Mes travaux ont porté sur la classification et la rigidité des points critiques de la fonctionnelle d'aire -- variétés minimales et apparentées -- pour des surfaces dans l'espace euclidien ou plus généralement dans certains espaces homogènes. Le cadre est riemannien ou hermitien, et je me suis attaché à comprendre et décrire la structure de l'équation aux dérivées partielles associée au problème géométrique, et celle de ses solutions. En utilisant des paramétrisations conformes, j'ai caractérisé notamment les solutions satisfaisant des conditions géométriques ou topologiques telles que le plongement, la fermeture des périodes en genre un (pour des tores lagrangiens) ou l'isopérimétrie.<br /><br />Dans une première partie, j'aborde essentiellement les surfaces minimales « classiques » dans l'espace euclidien de dimension 3, dont la structure analytique est donnée par la représentation de Weierstrass. Celle-ci peut-être utilisée pour ramener un problème sous contrainte topologico-géométrique (nombre de bouts, courbure totale finie, simple périodicité) à un problème d'analyse complexe sur une surfaces de Riemann, et j'en déduis un théorème de rigidité concernant l'escalier de Riemann. Mais les résultats les plus importants concernent le comportement des bouts minimaux plongés, de courbure totale infinie mais de type fini. On montre en effet que l'hypothèse de plongement contraint considérablement les données de de l'immersion, ce qui a pour conséquence géométrique que la surface est 0-asymptotique à l'hélicoïde. Ce résultat joue un rôle dans la preuve récente par Meeks et Rosenberg de l'unicité de l'hélicoïde comme surface proprement plongée simplement connexe.<br /><br />Dans la seconde partie, j'expose mes travaux sur le problème isopérimétrique dans les espaces plats périodiques de dimension trois. C'est un problème encore ouvert aujourd'hui, qui concerne les surfaces à courbure moyenne constante. J'ai notamment travaillé sur la conjecture sphère-cylindre-plan dans les tores de dimension 3, et démontré des inégalités pointues classifiant les cas (variétés, volumes) où la conjecture est vérifiée. Dans un autre registre, j'ai montré que les surfaces CMC possédant trop de symétries (les retournements diagonaux) ne peuvent être isopérimétriques, à l'exception des sphères bien sûr. Enfin, une étude numérique justifie que ce problème reste si difficile à résoudre.<br /><br />En troisième partie se trouvent mes travaux sur les surfaces lagrangiennes stationnaires hamiltoniennes, dans l'espace euclidien de dimension quatre, et aussi dans les espaces symétriques hermitiens. Après une introduction à ce domaine de la géométrie, on montrera que l'équation aux dérivées partielles de ce problème variationnel est associée à un système intégrable (comme dans le cas des surfaces CMC), avec différentes applications, telles la construction de tores de type fini, ou par potentiel suivant la méthode DPW (via les groupe de lacets). Cette approche est raffinée dans le cas euclidien où une représentation spinorielle permet de décrire explicitement les tores stationnaires hamiltoniens, résolvant même les problèmes de périodes. Enfin une généralisation aux dimensions supérieures est esquissée.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00008760
Date01 October 2004
CreatorsRomon, Pascal
PublisherUniversité de Marne la Vallée
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
Typehabilitation ࠤiriger des recherches

Page generated in 0.0018 seconds