Return to search

Matrix completion : statistical and computational aspects / Complétion de matrice : aspects statistiques et computationnels

Dans cette thèse nous nous intéressons aux méthodes de complétion de matrices de faible rang et étudions certains problèmes reliés. Un premier ensemble de résultats visent à étendre les garanties statistiques existantes pour les modèles de complétion avec bruit additif sous-gaussiens à des distributions plus générales. Nous considérons en particulier les distributions multinationales et les distributions appartenant à la famille exponentielle. Pour ces dernières, nous prouvons l'optimalité (au sens minimax) à un facteur logarithmique près des estimateurs à pénalité norme trace. Un second ensemble de résultats concernent l'algorithme du gradient conditionnel qui est notamment utilisé pour calculer les estimateurs précédents. Nous considérons en particulier deux algorithmes de type gradient conditionnel dans le cadre de l'optimisation stochastique. Nous donnons les conditions sous lesquelles ces algorithmes atteignent les performance des algorithmes de type gradient projeté. / This thesis deals with the low rank matrix completion methods and focuses on some related problems, of both statistical and algorithmic nature. The first part of this work extends the existing statistical guarantees obained for sub-Gaussian additive noise models, to more general distributions. In particular,we provide upper bounds on the prediction error of trace norm penalized estimatorwith high probability for multinomial distributions and for distributions belonging to the exponential family. For the latter, we prove that the trace norm penalized estimators are minimax optimal up to a logarithmic factor by giving a lower bound.The second part of this work focuses on the conditionnal gradient algorithm, which is used in particular to compute previous estimators. We consider the stochastic optimization framework and gives the convergence rate of twovariants of the conditional gradient algorithm. We gives the conditions under which these algorithms match the performance of projected gradient algorithms.

Identiferoai:union.ndltd.org:theses.fr/2016SACLT002
Date19 December 2016
CreatorsLafond, Jean
ContributorsUniversité Paris-Saclay (ComUE), Moulines, Éric, Salmon, Joseph
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench, English
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0019 seconds