Return to search

Atom interferometric experiments with Bose-Einstein condensates in microgravity

Atominterferometrie (AI) auf Basis von Lichtpulsen ist ein wichtiges Werkzeug der Präzisionsmesstechnik in Bereichen der inertialen Sensorik oder Fundamentalphysik geworden. Vor allem in Kombination mit ultrakalten, atomaren Quellen, sowie der Verwendung im schwerelosen Raum, werden hohe Sensitivitäten erwartet, die Verletzungen des schwachen Äquivalenzprinzips nachweisen können. QUANTUS-2 ist ein mobiles Atominterferometer, das am ZARM Fallturm in Bremen operiert. Durch seine Atomchip-basierte atomare Rubidiumquelle mit hoher Flussdichte dient es als Vorreiterexperiment für zukünftige Weltraummissionen, bei denen Schlüsseltechnologien wie die Erzeugung von Bose-Einstein Kondensaten (BECs), Delta-Kick Kollimation oder Anwendung verschiedener AI-Geometrien auf sekundenlangen Zeitskalen untersucht werden.

Im Rahmen dieser Arbeit wurde ein Kalium-Diodenlasersystem aufgebaut, um die Funktionalität auf Zwei-Spezies Nutzung zu erweitern. Basierend auf dem Design des Rubidium-Diodenlasersystem mit mikrointegrierten Laserdiodenmodulen und kompakter Elektronik, konnte es erfolgreich qualifiziert werden. In einem Machbarkeitsbeweis wurde eine magneto-optische Falle mit Kalium generiert, die die Fähigkeit des Lasersystems zum Fangen von Atomen demonstriert. Mit Rubidium wurden offene Ramsey-Interferometer und Mach-Zehnder Interferometer (MZIs) am Boden und in über 155 Abwürfen untersucht. Die Kombination von unterschiedlich stark Delta-Kick kollimierten BECs und AI in Schwerelosigkeit eröffnete eine neue Methode zur Bestimmung der magnetischen Linsendauer zur optimalen Kollimierung. Asymmetrische MZIs mit Interferometerzeiten von 2T > 1s konnten erfolgreich demonstriert werden. Mit gravimetrischen Untersuchungen am Boden auf Basis von MZIs und einer zusätzlichen Methode der Atomlevitation wurde die lokale Gravitationsbeschleunigung g ermittelt. Die untersuchten Schlüsseltechnologien sind fundamentale Notwendigkeiten, um den Weg für zukünftige Weltraummissionen aufzubereiten. / Light-pulse atom interferometry (AI) is an important tool for high precision measurements in the fields of inertial sensing or fundamental physics. Especially in combination with ultra-cold atomic sources and operation in microgravity, high sensitivities are expected that are necessary for the search for violations of the weak equivalence principle. QUANTUS-2 is a mobile atom interferometer operating at the ZARM drop tower in Bremen. With its high-flux, atom chip-based atomic rubidium source, it serves as a pathfinder for future space missions, examining key technologies like the generation of Bose-Einstein condensates (BECs), implementation of delta-kick collimation or application of various AI geometries.

In this thesis, a potassium diode laser system has been built to complete the preordained functionality of dual-species operation. Based on the design of the rubidium laser system with micro-integrated laser diode modules and compact electronics, it successfully passed the qualification tests. In a proof of principle measurement, a potassium magneto-optical trap could be generated to prove the system’s capability of trapping atoms. With rubidium, open Ramsey type interferometers and Mach-Zehnder interferometers (MZIs) were examined on ground and in over 155 drops in microgravity. The combination of variably delta-kicked collimated BECs and AI in microgravity revealed a new technique to determine the magnetic lens duration for optimal collimation. Asymmetric MZIs with interferometry times of 2T > 1s have successfully been demonstrated. Gravimetric examinations on ground with MZIs and by an additional levitation technique have been performed to determine the local gravitational acceleration g. The examined key technologies are fundamental necessities that have to be considered to pave the way for future space missions.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/28786
Date24 January 2024
CreatorsPahl, Julia
ContributorsKrutzik, Markus, Schröder, Tim, von Klitzing, Wolf
PublisherHumboldt-Universität zu Berlin
Source SetsHumboldt University of Berlin
LanguageEnglish
Detected LanguageEnglish
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf
Rights(CC BY-SA 4.0) Attribution-ShareAlike 4.0 International, https://creativecommons.org/licenses/by-sa/4.0/

Page generated in 0.0252 seconds