The purpose of the thesis is i) to discover the latent topics of SDG13 and their coverage in news media ii) to investigate the share of OA and Non-OA articles and reviews in each topic iii) to compare the share of different OA types (Green, Gold, Hybrid and Bronze) in each topic. It imposes a heuristic perspective and explorative approach in reviewing the three concepts open access, altmetrics and climate action (SDG13). Data is collected from SciVal, Unpaywall, Altmetric.com and Scopus rendering a dataset of 70,206 articles and reviews published between 2014-2018. The documents retrieved are analyzed with descriptive statistics and topic modeling using Sklearn’s package for LDA(Latent Dirichlet Allocation) in Python. The findings show an altmetric advantage for OA in the case of news media and SDG13 which fluctuates over topics. News media is shown to focus on subjects with “visible” effects in concordance with previous research on media coverage. Examples of this were topics concerning emissions of greenhouse gases and melting glaciers. Gold OA is the most common type being mentioned in news outlets. It also generates the highest number of news mentions while the average sum of news mentions was highest for documents published as Bronze. Moreover, the thesis is largely driven by methods used and most notably the programming language Python. As such it outlines future paths for research into the three concepts reviewed as well as methods used for topic modeling and programming.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hb-23413 |
Date | January 2020 |
Creators | Karlsson, Kalle |
Publisher | Högskolan i Borås, Akademin för bibliotek, information, pedagogik och IT |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds