As pesquisas sobre comportamento animal possuem como objetivo identificar e quantificar sinais de sofrimento a fim de eliminar os problemas obedecendo às normas de bem-estar. As alterações destes comportamentos mostram as necessidades ambientais para sua sobrevivência. Em certos casos, apenas as mudanças comportamentais podem evidenciar uma situação de estresse. Quando há mudanças na temperatura do ambiente, os animais apresentam várias respostas para manter a temperatura do corpo, começando com a conservação máxima de energia como a inatividade. Duas das mais efetivas características do comportamento termorregulatório incluem seleção de ambiente e ajuste de postura. Técnicas de processamento e análise de imagens podem vir a colaborar com a busca de informações contidas em imagens de animais confinados. Métodos invasivos de quantificação de comportamento mostram que há interferência do experimentador nas reações dos animais, comprometendo os resultados da pesquisa. Este trabalho visou obter, através da Visão Computacional, informações quanto à distribuição espacial de aves poedeiras frente a situações de conforto e estresse térmicos. Foram analisadas seqüências de imagens em ambiente MATLAB 7.0 ® de dois grupos de 5 aves (Hy-line W36) com 21 semanas de idade em condições de conforto térmico (T= 26°C ± 2°C e UR= 60% ± 2%) e 5 aves em condições de estresse térmico (T= 35°C ± 2°C e UR= 70% ± 2%) controladas em câmara climática. As aves foram demarcadas com tintas não tóxicas na região dorsal. Através de técnicas de clusterização de cores e localização do centro geométrico das aves, foi possível analisar a freqüência destas nas regiões de ninho, comedouro, bebedouro, área livre e \"bebedouro + comedouro\", e através do uso de redes Neurais Artificiais, foi possível obter padrões de formas do corpo das aves e relacioná-los a alguns comportamentos. A distribuição espacial é um forte indício das necessidades do animal em diferentes condições evidenciando que a freqüência em algumas regiões pode ser um indicativo de desconforto. A técnica de processamento e análise de imagens mostra-se como um método confiável e livre de subjetividade ou influência da fadiga humana no auxilio da classificação da dinâmica dos animais confinados. Trata-se de uma forma eficiente de analisar imagens de forma rápida para se ter conhecimento da dinâmica dos animais confinados ao longo do tempo. A necessidade do animal é demonstrada através de freqüências em determinadas regiões de interesse para seu bem-estar. / The animal behavior researches have as objective identify and quantify suffering signals in order to eliminate the problems obeying the welfare norms. The alterations of these behaviors show the ambient necessities for the animals\' survivals. In certain cases, only the abnormal behaviors can evidence a situation of stress. When the environment temperature changes, the animals present some answers to keep the body\'s temperature constant, starting with the maximum conservation of energy as the inactivity. Two of the most effective characteristics of the thermoregulatory behavior includes environment selection and position adjustment. Image processing and analysis techniques can collaborate with the research of information contained in images of confined animals. Invasive methods of quantification of the behavior show that there is interference of the experimenter on the animal reactions compromising the research results. This work aimed to know, through the Computer Vision, information about the laying hens\' spatial distribution at the thermal comfort and stress situations. Image sequences of two groups of 5 birds (hy-line W36) aging 21 weeks in conditions of thermal comfort (T= 26°C ± 2°C and UR= 60% ± 2%) and 5 birds in conditions had been analyzed of stress thermal (T= 35°C ± 2°C and UR= 70% ± 2%) and controlled in climatic chamber. The birds had been demarcated with not toxic inks in the dorsal region. Through colors clusters techniques in MATLAB 7.0 ® and the localization of the geometric center of the birds, it was possible to analyze the frequency of these birds in the nest regions, feed through, water through, free area and \"water through + feed through\", and through of Artificial Neural Network was possible to have standards shapes of bodies birds and to refers to some behaviors. The spatial distribution is an important indicative fort of the animal necessities in different conditions evidencing that the frequency in some regions can be a discomfort indicative. The processing technique and analysis of the images reveals as a trustworthy method and free of subjectivity or of the fatigue human`s influence in support of the dynamics classification of the confined animals. It is about one of the efficient form to analyze the images to have a better understanding of the dynamics of the confined animals` dynamics throughout time. The necessity of the animal is demonstrated through frequencies in determined regions of interest for its welfare condition.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-13032007-161048 |
Date | 05 February 2007 |
Creators | Valéria Cristina Rodrigues |
Contributors | Iran José Oliveira da Silva, Ernane José Xavier Costa, José Fernando Machado Menten |
Publisher | Universidade de São Paulo, Agronomia (Física do Ambiente Agrícola), USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0069 seconds