Return to search

Methode multigrilles parallèle pour les simulations 3D de mise en forme de matériaux / Methode multigrilles parallèle pour les simulations 3D de mise en forme de matériaux

Cette thèse porte sur le développement d’une méthode multigrilles parallèle visant à réduire les temps de calculs des simulations éléments finis dans le domaine de la mise en forme de pièces forgées en 3D. Ces applications utilisent une méthode implicite, caractérisées par une formulation mixte en vitesse/pression et une gestion du contact par pénalisation. Elles impliquent de grandes déformations qui rendent nécessaires des remaillages fréquents sur les maillages tétraédriques non structurés utilisés. La méthode multigrilles développée suit une approche hybride, se basant sur une construction géométrique des niveaux grossiers par déraffinement de maillage non emboîtés et sur une construction algébrique des systèmes linéaires intermédiaires et grossiers. Un comportement asymptotique quasi-linéaire et une bonne efficacité parallèle sont attendus afin de permettre la réalisation de simulations à grand nombre de degrés de liberté dans des temps plus raisonnables qu’aujourd’hui. Pour cela, l’algorithme de déraffinement de maillages est compatible avec le calcul parallèle, ainsi que les opérateurs permettant les transferts de champs entre les différents niveaux de maillages partitionnés. Les spécificités des problèmes à traiter ont mené à la sélection d'un lisseur plus complexe que ceux utilisés plus fréquemment dans la littérature. Sur la grille la plus grossière, une méthode de résolution directe est utilisée, en séquentiel comme en calcul parallèle. La méthode multigrilles est utilisée en tant que préconditionneur d’une méthode de résidu conjugué et a été intégrée au logiciel FORGE NxT et montre un comportement asymptotique et une efficacité parallèle proches de l’optimal. Le déraffinement automatique de maillages permet une compatibilité avec les remaillages fréquents et permet à la méthode multigrilles de simuler un procédé du début à la fin. Les temps de calculs sont significativement réduits, même sur des simulations avec des écoulements particuliers, sur lesquelles la méthode multigrilles ne peut être utilisée de manière optimale. Cette robustesse permet, par exemple, de réduire de 4,5 à 2,5 jours le temps de simulation d’un procédé. / A parallel multigrid method is developed to reduce large computational costs involved by the finite element simulation of 3D metal forming applications. These applications are characterized by a mixed velocity/pressure implicit formulation with a penalty formulation to enforce contact and lead to large deformations, handled by frequent remeshings of unstructured meshes of tetrahedral. The developed multigrid method follows a hybrid approach where the different levels of non-nested meshes are geometrically constructed by mesh coarsening, while the linear systems of the intermediate and coarse levels result from the algebraic approach. A close to linear asymptotical behavior is expected along with parallel efficiency in order to allow simulations with large number of degrees of freedom under reasonable computation times. These objectives lead to a parallel mesh coarsening algorithm and parallel transfer operators allowing fields transfer between the different levels of partitioned meshes. Physical specificities of metal forming applications lead to select a more complex multigrid smoother than those classically used in literature. A direct resolution method is used on the coarsest mesh, in sequential and in parallel computing. The developed multigrid method is used as a preconditioner for a Conjugate Residual algorithm within FORGE NxT software and shows an asymptotical behavior and a parallel efficiency close to optimal. The automatic mesh coarsening algorithm enables compatibility with frequent remeshings and allows the simulation of a forging process from beginning to end with the multigrid method. Computation times are significantly reduced, even on simulations with particular material flows on which the multigrid method is not optimal. This robustness allows, for instance, reducing from 4.5 to 2.5 days the computation of a forging process.

Identiferoai:union.ndltd.org:theses.fr/2017PSLEM009
Date16 June 2017
CreatorsVi, Frédéric
ContributorsParis Sciences et Lettres, Fourment, Lionel, Mocellin, Katia
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0026 seconds