Return to search

Propriétés physiques des cristaux liquides discotiques nanoconfinés / Physcal properties of discotic liquid crystals nanoconfined

L'objectif de cette thèse est de mener une étude fondamentale et expérimentale des propriétés physiques des cristaux liquides discotiques colonnaires (CLDCs) confinés dans des matrices poreuses templates hautement ordonnées à l'échelle nanométrique. Les molécules des CLDCs de forme plane, composées de noyaux polyaromatiques rigides entourées de chaînes aliphatiques flexibles fonctionnalisables, sont susceptibles de s'auto-assembler dans des colonnes favorisant ainsi le recouvrement de leurs orbitales électroniques π. Ce qui fait de ces matériaux de véritables candidats pour des applications dans l'électronique moléculaire et la photovoltaïque grâce à la possibilité de migration des porteurs de charges le long de leurs colonnes. Cependant, ces applications nécessitent une bonne maîtrise des paramètres influant sur les mécanismes d'alignement dans les phases colonnaires, sur de grands monodomaines, et de préférence à température ambiante. Une méthode très prometteuse visant à optimiser les longueurs de diffusion des porteurs de charge a été récemment proposée, basée sur la formation de nanofils orientés de CLDCs par auto-assemblage dans des matrices dites « templates » (de moulage). Toutefois, les propriétés structurales, dynamiques et les effets de confinement sur ces technologies restent aujourd'hui mal connus et morcelés et pourraient constituer un véritable verrou scientifique pour leur réalisation. Notre étude s'est portée sur les CLDCs commerciaux (HPT) et le Py4CEH (moins connus) qui sont confinés dans des alumines poreuses (AAO) et du silicium poreux (Sip) de diamètres de pores de quelques dizaines de nm. Les diagrammes de phase ont été d'abord étudiés par DSC puis les effets structuraux ont été approfondis grâce à la diffusion de neutrons. Dans les géométries confinées, nous observons une dépression des températures de transition, un élargissement du domaine de stabilité de la phase colonnaire et l'ouverture d'une hystérèse amplifiée dans les pores de plus petite taille. Un ordre orientationnel très élevé a été trouvé dans les phases colonnaires bulk par la RMN du solide et la structure des systèmes confinés colonnaires, dominée par une distribution radiale avec un ancrage homéotrope a été déterminée. La dynamique moléculaire a été étudiée par diffusion quasiélastique de neutrons. Elle est affectée par le confinement : la dynamique de grande amplitude est fortement ralentie, tandis que la dynamique rapide locale devient régie par une distribution très large de temps caractéristiques. / The aim of this work is to conduct fundamental and experimental studies of the physical properties of columnar discotic liquid crystal (CDLCs) confined in highly ordered porous templates at the nanoscale. CDLC molecule of planar shape, consist in rigid polyaromatic nuclei surrounded by functionalizable flexible aliphatic chains, and are capable of self-assembly in columns, thereby promoting overlap of their π electron orbitals. This makes these materials real candidates for applications in molecular electronics and photovoltaics due to the possibility of migration of the charge carriers along their columns. However, these applications require a good control of the parameters affecting the alignment mechanisms in the columnar phases of large single domains, preferably at room temperature. A very promising approach to optimize the diffusion lengths of charge carriers has been recently proposed, based on the formation of oriented CDLC nanowires by self-assembly in so-called "templates". However, structural and dynamical proprieties and confinement effects are still scarce, and could be a real scientific lock to their implementation. Our study is focused on commercial CDLCs (HPT) and Py4CEH which are confined in porous alumina and porous silicon membranes with pore diameters of c.a. tens of nm. The phase diagram was first studied by DSC and more deeply characterized by neutron scattering. In confined geometries, we observe a depression of the phase transition temperatures, a broadening of the columnar phase stability domain and an opening of hysteresis loops amplified by smaller pore size. A high orientational order was found in the bulk columnar phases by solid-state NMR, and the structure of confined columnar systems, dominated by a radial distribution with homeotropic anchoring was observed. The molecular dynamics was studied by quasielastic neutron scattering. It is affected by confinement: large lengthscale motions are massively slowed down, whereas the rapid and local dynamics becomes submitted to large distributions of correlation times.

Identiferoai:union.ndltd.org:theses.fr/2013REN1S131
Date14 October 2013
CreatorsNdao, Makha
ContributorsRennes 1, Lefort, Ronan
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0085 seconds