Cette thèse développe des méthodes de sélection de modèles pour des applications en Biostatistique et plus particulièrement dans le domaine médical. Dans la première partie, nous proposons une méthode et un programme de correction du niveau de signification d'un test lorsque plusieurs codages d'une variable explicative sont essayés. Ce travail est réalisé dans le cadre d'une régression logistique et appliqué à des données sur la relation entre cholestérol et démence. La deuxième partie de la thèse est consacrée au développement d'un critère d'information général permettant de sélectionner un estimateur parmi une famille d'estimateurs semi-paramétriques. Le critère que nous proposons est basé sur l'estimation par bootstrap de l'information de Kullback-Leibler. Nous appliquons ensuite ce critère à la modélisation de l'effet de l'amiante sur le risque de mésothéliome et nous comparons cette approche à la méthode de sélection de Birgé-Massart. Enfin, la troisième partie présente un critère de sélection en présence des données incomplètes. Le critère proposé est une extension du critère developpé dans la deuxième partie. Ce critère, construit sur l'espérance de la log-vraisemblance observée, permet en particulier de sélectionner le paramètre de lissage dans l'estimation lisse de la fonction de risque et de choisir entre des modèles stratifiés et des modèles à risques proportionnels. Nous avons notamment appliqué cette méthode à la modélisation de l'effet du sexe et du niveau d'éducation sur le risque de démence.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00002430 |
Date | 11 December 2002 |
Creators | Liquet, benoit |
Publisher | Université Victor Segalen - Bordeaux II |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0025 seconds