The numerical solution of Stein (aka discrete Lyapunov) equations is the primary step in Newton's method for the solution of discrete-time algebraic Riccati equations (DARE). Here we present a low-rank Smith method as well as a low-rank alternating-direction-implicit-iteration to compute low-rank approximations to solutions of Stein equations arising in this context. Numerical results are given to verify the efficiency and accuracy of the proposed algorithms.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:ch1-201000182 |
Date | 04 March 2010 |
Creators | Benner, Peter, Faßbender, Heike |
Contributors | TU Chemnitz, Fakultät für Mathematik |
Publisher | Universitätsbibliothek Chemnitz |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:preprint |
Format | application/pdf, text/plain, application/zip |
Rights | Dokument ist für Print on Demand freigegeben |
Relation | dcterms:isPartOf:Chemnitz Scientific Computing Preprints ; 09-11 |
Page generated in 0.0022 seconds