Return to search

Computational Investigation of DNA Repair Enzymes: Determination and Characterization of Cancer Biomarkers and Structural Features

Genomic integrity is important for living cells' correct functioning and propagation. Deoxyribonucleic acid as a molecule is a subject to chemical reactions with agents that can come from environment as well as from internal metabolism processes. These reactions can induce damage to DNA and thus compromise the genetic information, and result in disease and death of an organism. To mitigate the damage to DNA, cells have evolved to have multiple DNA repair pathways. Presented here is a computational study of DNA repair genes. The structure of the Homo sapiens direct DNA repair gene ALKBH1 is predicted utilizing homology modeling methods and using AlkB and DBL proteins as templates. Analysis of the obtained structure and molecular dynamics simulations give insights into potentially functionally important residues of the protein. In particular, zinc finger domains are predicted, and lysines that could perform catalytic activities are investigated. Subsequent mutagenesis experiments revealed the effect of the residues predicted to form zinc fingers on activity of ALKBH1. Structure and dynamics of AlkD, a Bascillus cereus base excision DNA repair protein is also studied. This protein has been shown to bind DNA with large alkyl adducts and perform excision catalysis without base flipping which is characteristic to other enzymes in the same family. MD simulations of AlkD revealed that B helix, which interacts with DNA, has higher fluctuations when AlkD is not bound to DNA, and thus could have a role in binding and recognition of DNA. For the purpose of finding biomarkers and to further our understanding of a mode of action of DNA repair genes, statistical methods were applied to identify mutations that are linked to cancer phenotypes. Analysis was based on case-control studies of patients with cancers of prostate, breast, pancreas, lung as well as chronic lymphocytic leukemia from NCBI dbGAP database. Those mutations that result in missense mutations were further investigated. In particular, extensive MD simulations and experimental investigations were performed on the mutation in the ALKBH7 gene that was found to be linked to prostate cancer.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc1157566
Date05 1900
CreatorsSilvestrov, Pavel
ContributorsCisneros, Andrés G., Cundari, Thomas R., Marshall, Paul, 1960-, Padilla, Pamela, Tao, Peng
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
Formatx, 96 pages, Text
RightsPublic, Silvestrov, Pavel, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.002 seconds