Return to search

Contribution à l'élaboration d'un modèle d'évolution physico-chimique de la neige

Il est aujourd'hui avéré que la composition chimique de l'atmosphère des régions enneigées - et notamment des régions polaires - est sensiblement affectée par les échanges d'espèces chimiques réactives entre l'air et la neige. En effet, le manteau neigeux constitue un véritable réacteur photochimique multiphasique, mais les mécanismes physico-chimiques à l'œuvre en son sein sont encore mal connus. Une compréhension détaillée des processus s'y déroulant est indispensable pour modéliser correctement la composition et la réactivité de l'atmosphère au-dessus des régions enneigées. De plus, la reconstitution de l'évolution post-dépôt des composés chimiques stables de la neige est également un préalable indispensable pour permettre l'interprétation paléoclimatique de leurs profils de concentration enregistrés dans les carottes de glace.Le nitrate (NO3-) présent dans la neige joue un rôle fondamental, car sa photolyse induit notamment l'émission d'oxydes d'azote (NOx = NO + NO2) par le manteau neigeux, qui modifient la capacité oxydante de l'atmosphère via la production d'ozone. L'objet de cette thèse a donc été d'étudier par modélisations les processus physico-chimiques intervenants dans l'évolution de la concentration du nitrate dans la neige.Une première approche, prolongeant des études préexistantes, a visé à identifier un mécanisme réactionnel pour la photochimie du nitrate dans la neige, en postulant notamment l'existence d'une couche quasi-liquide à la surface des grains de neige. Néanmoins, les propriétés exactes de l'interface air - glace sont, à l'heure actuelle, encore mal caractérisées, et il est apparu que cette démarche présentait de trop larges incertitudes pour être poursuivie.Une discussion approfondie a alors été menée afin d'évaluer les tentatives actuelles de modélisation de la chimie de la neige, et dans le but de proposer une nouvelle approche plus réaliste au regard du niveau de connaissance actuel.Ainsi, dans une seconde partie, l'ensemble des processus d'échange physico-chimiques du nitrate entre l'air et la neige ont été étudiés puis modélisés : adsorption à la surface, diffusion en phase solide et co-condensation. Parmi les résultats obtenus, il est apparu que les paramétrisations actuelles de la couverture surfacique en nitrate étaient incapables de reproduire les concentrations mesurées, dans le cas de la neige de surface à Dome C, et révèlent d'importantes surestimations. A contratio, la prise en compte conjointe de la diffusion en phase solide ainsi que d'un processus de co-condensation permet de bien reproduire qualitativement les séries temporelles de plus d'un an, couvrant donc à la fois l'été et l'hiver austral, qui présentent chacun des caractéristiques distinctes en terme de concentration mesurées.Cette étude révèle ainsi l'importance de ces processus physico-chimiques d'échange dans la modélisation de la chimie de la neige, et pose les bases des mécanismes à prendre en compte dans le cadre de développements futurs.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00870428
Date02 May 2012
CreatorsBock, Josue
PublisherUniversité de Grenoble
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.002 seconds