Cette thèse porte sur le développement de schémas semi-implicites à pas fractionnaires pour les équations de Navier-Stokes compressibles ; ces schémas entrent dans la classe des méthodes de correction de pression.La discrétisation spatiale choisie est de type "à mailles décalées :éléments finis mixtes non conformes (éléments finis de Crouzeix-Raviart ou Rannacher-Turek) ou schéma MAC classique.Une discrétisation en volumes finis décentrée amont du bilan de masse garantit la positivité de la masse volumique.La positivité de l'énergie interne est obtenue en discrétisant le bilan d'énergie interne continu, par une méthode de volumes finis décentrée amont, enfin, et en couplant ce bilan d'énergie interne discret à l'étape de correction de pression.On effectue une discrétisation particulière en volumes finis sur un maillage dual du terme de convection de vitesse dans le bilan de quantité de mouvement et une étape de renormalisation de la pression; ceci permet de garantir le contrôle au cours du temps de l'intégrale de l'énergie totale sur le domaine.L'ensemble de ces estimations a priori implique en outre, par un argument de degré topologique, l'existence d'une solution discrète. L'application de ce schéma aux équations d'Euler pose une difficulté supplémentaire.En effet, l'obtention de vitesses de choc correctes nécessite que le schéma soit consistant avec l'équation de bilan d'énergie totale, propriété que nous obtenons comme suit. Tout d'abord, nous établissons un bilan discret (local) d'énergie cinétique.Ce dernier comporte des termes sources, que nous compensons ensuite dans le bilan d'énergie interne. Les équations d'énergie cinétique et interne sont associées au maillage dual et primal respectivement, et ne peuvent donc être additionnées pour obtenir un bilan d'énergie totale ; cette dernière équation est toutefois retrouvée, sous sa forme continue, à convergence : si nous supposons qu'une suite de solutions discrètes converge lorsque le pas de temps et d'espace tendent vers 0,, nous montrons en effet, en 1D au moins, que la limite en satisfait une forme faible.Ces résultats théoriques sont confortés par des tests numériques.Des résultats similaires sont obtenus pour les équations de Navier-Stokes barotropes. / This thesis is concerned with the development of semi-implicit fractional step schemes, for the compressible Navier-Stokes equations; these schemes are part of the class of the pressure correction methods.The chosen spatial discretization is staggered: non conforming mixed finite elements (Crouzeix-Raviart or Rannacher-Turek) or the classic MAC scheme. An upwind finite volume discretization of the mass balanced guarantees the positivity of the density. The positivity of the internal energy is obtained by discretising the internal energy balance by an upwind finite volume scheme and by coupling the discrete internal energy balance with the pressure correction step.A special finite volume discretization on dual cells is performed for the convection term in the momentum balance equation, along with a renormalization of the pressure; this allows to guarantee the control in time of integral of the total energy over the domain.All these a priori estimates implies lead to the existence of a discrete solution by a topological degree argument.The application of this scheme the equations of Euler yields an additional difficulty.Indeed, obtaining correct shock speeds requires that the scheme be consistent with the total energy balance,, property which we obtain as follows.First of all, a local discrete kinetic energy balance is established; it contains source terms which are compensated by adding some source terms in the internal energy balance. The kinetic and internal energy equations are associated with the dual and primal meshes respectively, and thus cannot be added to obtain a balance total energy balance; its continuous counterpart is however recovered at the limit: if we suppose that a sequence of discrete solutions converges when the space and time steps tend to 0, we indeed show, in 1D at least, that the limit satisfies a weak form of the equation. These theoretical results are comforted by numerical tests.Similar results are obtained for the barotropic Navier--Stokes equations
Identifer | oai:union.ndltd.org:theses.fr/2011AIX10103 |
Date | 28 November 2011 |
Creators | Kheriji, Walid |
Contributors | Aix-Marseille 1, Herbin, Raphaèle |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0024 seconds