Return to search

Méthode de Partitionnement pour le traitement distribué et parallèle de données XML.

Durant cette dernière décennie, la diffusion du format XML pour représenter les données générées par et échangées sur le Web a été accompagnée par la mise en œuvre de nombreux moteurs d'évaluation de requêtes et de mises à jour XQuery. Parmi ces moteurs, les systèmes " mémoire centrale " (Main-memory Systems) jouent un rôle très important dans de nombreuses applications. La gestion et l'intégration de ces systèmes dans des environnements de programmation sont très faciles. Cependant, ces systèmes ont des problèmes de passage à l'échelle puisqu'ils requièrent le chargement complet des documents en mémoire centrale avant traitement.Cette thèse présente une technique de partitionnement des documents XML qui permet aux moteurs " mémoire principale " d'évaluer des expressions XQuery (requêtes et mises à jour) pour des documents de très grandes tailles. Cette méthode de partitionnement s'applique à une classe de requêtes et mises à jour pertinentes et fréquentes, dites requêtes et mises à jour itératives.Cette thèse propose une technique d'analyse statique pour reconnaître les expressions " itératives ". Cette analyse statique est basée sur l'extraction de chemins à partir de l'expression XQuery, sans utilisation d'information supplémentaire sur le schéma. Des algorithmes sont spécifiés, utilisant les chemins extraits par l'étape précédente, pour partitionner les documents en entrée en plusieurs parties, de sorte que la requête ou la mise à jour peut être évaluée sur chaque partie séparément afin de calculer le résultat final par simple concaténation des résultats obtenus pour chaque partie. Ces algorithmes sont mis en œuvre en " streaming " et leur efficacité est validée expérimentalement.En plus, cette méthode de partitionnement est caractérisée également par le fait qu'elle peut être facilement implémentée en utilisant le paradigme MapReduce, permettant ainsi d'évaluer une requête ou une mise à jour en parallèle sur les données partitionnées.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00759173
Date21 September 2012
CreatorsMalla, Noor
PublisherUniversité Paris Sud - Paris XI
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0019 seconds