Return to search

Spatially fractionated proton therapy: A Monte Carlo verification

Spatially fractionated radiation therapy (or grid) using megavoltage x-rays is a relatively new method of treating bulky (>8 cm) malignant tumors. Unlike the conventional approach in which the entire tumor is targeted with a nearly uniform radiation field, in grid the incident radiation is collimated with a special grid collimator. As such, only the volume under the open areas of the grid receives direct irradiation from the incident beam; the rest only sees scattered radiation and hence receives significantly less dose. Those regions seeing less dose serve as regrowth areas for normal tissues, thus reducing the normal tissue complication probability after the treatment. Although the grid dose distribution in a tumor is non-uniform, the regression of tumor mass has exhibited uniform regression clinically. Protons have two advantages over megavoltage x-rays which are typically used for grid: (1) protons scatter less in tissue, and (2) they have a fixed range in tissue (the Bragg peak) that can be used to target a tumor. The goal of this thesis is to computationally and experimentally assess the feasibility of grid using clinical proton beams. The proton pencil beams at the Provision Cancer Center in Knoxville, Tennessee, are used to create an array of beams mimicking the arrangement of beams in grid therapy. The dose distributions at various depths in a solid-water phantom are obtained computationally by the Monte Carlo code MCNP and validated by RayStation experimental Gafchromic film EBT3. The results are compared with those of the grid using megavoltage x-rays.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/55045
Date27 May 2016
CreatorsFair, Jenna Leigh
ContributorsWang, Chris K.
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0018 seconds