Return to search

Decomposição celular de variedades Grassmannianas via teoria de Morse

Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-04-17T20:39:18Z
No. of bitstreams: 1
alberthjohnnunezsullca.pdf: 789070 bytes, checksum: 6fff839362c420dcaaaf67f1f9975a5e (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-04-18T13:51:59Z (GMT) No. of bitstreams: 1
alberthjohnnunezsullca.pdf: 789070 bytes, checksum: 6fff839362c420dcaaaf67f1f9975a5e (MD5) / Made available in DSpace on 2017-04-18T13:52:00Z (GMT). No. of bitstreams: 1
alberthjohnnunezsullca.pdf: 789070 bytes, checksum: 6fff839362c420dcaaaf67f1f9975a5e (MD5)
Previous issue date: 2017-03-17 / Apresentamos neste trabalho uma decomposição celular CW das variedades Grassmannianas via teoria de Morse. Isto é feito de duas maneiras distintas por meio de representações matriciais das Grassmannianas chamadas modelo projeção e modelo reflexão. Definimos funções de Morse, a saber, uma função do tipo altura e uma função do tipo “distância ao quadrado”, respectivamente, para cada um dos modelos projeção e reflexão. Estudamos os seus pontos críticos e os índices dos mesmos, obtendo assim duas formas para calcular a decomposição celular CW. Em particular, no modelo projeção, isto é feito exibindo-se as curvas integrais associadas ao campo gradiente da função altura. / We present in this work a CW cellular decomposition of Grassmannian varieties via Morse theory. This is done in two different ways. By means of matrix representations of Grassmannian called model projection and reflection model. We define Morse functions, namely a height-type function and a "square-distance" function, respectively, for each of the projection and reflection models. We study their critical points and their indices, thus obtaining two ways to calculate the CW cellular decomposition. In particular, in the projection model, this is done by displaying the integral curves associated with the gradient field of the height function.

Identiferoai:union.ndltd.org:IBICT/oai:hermes.cpd.ufjf.br:ufjf/4076
Date17 March 2017
CreatorsSullca, Alberth John Nuñez
ContributorsRabelo, Lonardo, Santos, Laércio José dos, Ferreira, Lucas Conque Seco, Casagrande, Rogerio
PublisherUniversidade Federal de Juiz de Fora (UFJF), Mestrado Acadêmico em Matemática, UFJF, Brasil, ICE – Instituto de Ciências Exatas
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Repositório Institucional da UFJF, instname:Universidade Federal de Juiz de Fora, instacron:UFJF
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0018 seconds