Return to search

Estimates for the condition numbers of large semi-definite Toeplitz matrices

This paper is devoted to asymptotic estimates for the condition numbers

$\kappa(T_n(a))=||T_n(a)|| ||T_n^(-1)(a)||$

of large $n\cross n$ Toeplitz matrices $T_N(a)$ in the case where
$\alpha \element L^\infinity$ and $Re \alpha \ge 0$ . We describe several classes
of symbols $\alpha$ for which $\kappa(T_n(a))$ increases like $(log n)^\alpha, n^\alpha$ ,
or even $e^(\alpha n)$ . The consequences of the results for singular values, eigenvalues,
and the finite section method are discussed. We also consider Wiener-Hopf integral
operators and multidimensional Toeplitz operators.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:17499
Date30 October 1998
CreatorsBöttcher, A., Grudsky, S. M.
PublisherTechnische Universität Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:preprint, info:eu-repo/semantics/preprint, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds