Return to search

Polarization Rotation Study of Microwave Induced Magnetoresistance Oscillations in the GaAs/AlGaAs 2D System

Previous studies have demonstrated the sensitivity of the amplitude of the microwave radiation-induced magnetoresistance oscillations to the microwave polarization. These studies have also shown that there exists a phase shift in the linear polarization angle dependence. But the physical origin of this phase shift is still unclear. Therefore, the first part of this dissertation analyzes the phase shift by averaging over other small contributions, when those contributions are smaller than experimental uncertainties. The analysis indicates nontrivial frequency dependence of the phase shift. The second part of the dissertation continues the study of the phase shift and the results suggest that the specimen exhibits only one preferred radiation orientation for different Hall-bar sections. The third part of the dissertation summarizes our study of the Hall and longitudinal resistance oscillations induced by microwave frequency and dc bias at low filling factors. Here, the phase of these resistance oscillations depends on the contact pair on the device, and the period of oscillations appears to be inversely proportional to radiation frequency.

Identiferoai:union.ndltd.org:GEORGIA/oai:scholarworks.gsu.edu:phy_astr_diss-1090
Date15 December 2016
CreatorsLiu, Han-Chun
PublisherScholarWorks @ Georgia State University
Source SetsGeorgia State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourcePhysics and Astronomy Dissertations

Page generated in 0.0246 seconds