Return to search

[en] DEVELOPMENT OF AN AUTOMATED SYSTEM, BASED ON THE CONCEPT OF EVOLUTIONARY HARDWARE, AIMED AT DETERMINING THE OPTIMAL OPERATING POINT OF GMI SENSORS / [pt] DESENVOLVIMENTO DE UM SISTEMA AUTOMATIZADO, BASEADO NO CONCEITO DE HARDWARE EVOLUCIONÁRIO, PARA DETERMINAÇÃO DO PONTO ÓTIMO DE OPERAÇÃO DE SENSORES GMI

[pt] Elementos sensores baseados no efeito GMI são uma nova família de sensores magnéticos que apresentam grande quando submetidos a campos magnéticos externos. Estes sensores têm sido utilizados no desenvolvimento de magnetômetros de alta sensibilidade, destinados à medição de campos ultra fracos. Por sua vez, a sensibilidade de um magnetômetro está diretamente associada à sensibilidade de seus elementos sensores. No caso de amostras GMI, esta sensibilidade é otimizada buscando-se a maximização da variação do módulo ou da fase da impedância em função do campo magnético ao qual a amostra é submetida. Estudos recentes mostram que transdutores GMI baseados na variação de fase podem exibir sensibilidades até 100 vezes superiores às apresentadas por transdutores baseados na leitura do módulo do elemento sensor, o que fez com que os trabalhos conduzidos nesta dissertação focassem na maximização da sensibilidade de fase, a qual é majoritariamente dependente de quatro fatores: o comprimento da amostra, o campo magnético externo, o nível DC e a frequência da corrente de excitação. Contudo, a busca do conjunto de parâmetros que otimiza a sensibilidade das amostras é geralmente empírica e muito demorada. Esta dissertação propõe uma nova técnica de otimização da sensibilidade, baseada no uso de algoritmos genéticos evoluindo em hardware, a fim de se definir qual o conjunto de parâmetros responsável pela maximização da sensibilidade das amostras. Ressalta-se que, além dos parâmetros de otimização anteriormente explicitados, também foram realizados testes considerando a amplitude da corrente de excitação como uma variável livre, sendo que os resultados obtidos são apresentados e discutidos. Foi implementada uma bancada de testes e desenvolvida uma interface gráfica em LabVIEW, para monitorar e medir o comportamento da impedância de amostras GMI em função de variações nos parâmetros de interesse. Por sua vez, implementou-se um módulo de otimização em Matlab, baseado em algoritmos genéticos, responsável por encontrar a combinação de parâmetros que maximiza a sensibilidade dos sensores GMI avaliados (ponto ótimo de operação). / [en] GMI sensors are a new family of magnetic sensors that exhibit a huge variation of their impedance when subjected to external magnetic fields. These sensors have been used in the development of high sensitivity magnetometers, aimed at measuring ultra-weak magnetic fields. In turn, the sensitivity of a magnetometer is directly associated with the sensitivity of their sensor elements. In the case of GMI samples, this sensitivity is optimized by maximizing the variation of the impedance magnitude or phase as a function of the magnetic field applied to the sample. Recent studies show that GMI transducers based on phase variation can exhibit sensitivities up to 100 times higher than those presented by transducers based on impedance magnitude readings. The results obtained in these previous studies made the current work focusing on the maximization of phase sensitivity, which is mostly dependent on four factors: sample length, external magnetic field, DC level and frequency of the excitation current. However, the search for the set of parameters that optimizes the sensitivity of the samples is usually empirical and very time consuming. Thus, this dissertation proposes a new optimization technique, based on the use of genetic algorithms evolving on hardware, in order to define which set of parameters is responsible for maximizing the sensitivity of the samples. It should be noted that in addition to the optimization parameters previously described, this work also carried out tests considering the amplitude of the excitation current as a free variable, and the results obtained are presented and discussed. A test bench was implemented and a graphical interface was developed in LabVIEW to monitor and measure the impedance behavior of GMI samples due to variations in the parameters of interest. In turn, a Matlab optimization module based on genetic algorithms was implemented, in order to find the combination of parameters that maximizes the impedance phase sensitivity of the evaluated GMI sensors (optimum operating point).

Identiferoai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:32015
Date14 November 2017
CreatorsJAIRO DANIEL BENAVIDES MORA
ContributorsEDUARDO COSTA DA SILVA, EDUARDO COSTA DA SILVA, EDUARDO COSTA DA SILVA
PublisherMAXWELL
Source SetsPUC Rio
LanguagePortuguese
Detected LanguagePortuguese
TypeTEXTO

Page generated in 0.0018 seconds