Return to search

Fonctionnalisation acide de polymères mésostructurés

Polymers, in our society, are one of the materials most often used for objects fabrication. Industries use polymers for their low cost and their capacity to be easily adapted. The adaptation of the organic polymer passes by the wide variety of monomers ~d the great capacity to functionalize resins. However, bulk polymers have a low surface area and a low total pore volume that limit their use. To improve these properties, weherein used a specific method named nanocasting. A hard porous template is prepared and filled with precursors that as subsequently solidified and, finally, the template is dissolved. With tbis method two types of mesostructure could suceessfully be nanoeasted: 2D-hexagonal (SBA15) and Ia3d (KIT-6). These replie as were characterized by nitrogen adsorption, low angle X-ray diffraction, TEM images and thermogravimetric analyses. Different monomers can be used such as styrene, chlorornethylstyrene and methacrylate based monorners or a mixture of these monomers. A high crosslinker degree is needed for maintaining a rigid structure to avoid the structure collapsing after silica dissolution. Monomer can be incorporated in controlled quantity for increasing availability of functional sites. Then, that, it is possible to incorporate functional groups such as sulfonate, phosphate, both of them or amines. These functionalized materials were have been characterized by same techniques used for other replicas and additionally with elemental analysis and catalytic tests. Catalytic activity was tested with an esterification reaction to determine conversion rates and selectivity. This study confirms that the nanocasting is a convenient way to prepare functionalized nanostructured polymers. / Les polymères organiques ont la capacité d'être facilement mis en forme et facilement adaptés aux besoins spécifiques de chacune de leurs applications. Cependant, leur faible surface spécifique et leur faible volume poreux restreignent souvent leur utilisation. Pour améliorer ces deux caractéristiques de façon significative, il faut .structurer le polymère à l'échelle du nanomètre. Pour ce faire, la technique du nanomoulage a été utilisée. Cette technique consiste à utiliser un moule rigide poreux pour structurer à l'échelle nanométrique une réplique inverse à base d'autres compositions chimiques. La physisorption de gaz, la diffraction des rayons-X aux bas angles, la microscopie électronique à transmission (rEM) et l'analyse thermogravimétrique ont été utilisées pour caractériser la structure des moules et des répliques. De plus, ces polYlnères nanostructurés ont été fonctionnalisés avec des groupements acides tels que les acides sulfoniques, les acides phosphoniques, et les deux groupelnents acides simultanément, ou avec des bases telles les amines. Ces matériaux sont testés en catalyse acide hétérogène pour montrer leur efficacité et leur sélectivité ainsi que leur résistance aux solvants. Ce travail démontre que le nanomoulage est un moyen efficace de structurer les polymères organiques.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/20415
Date13 April 2018
CreatorsBilodeau, Simon
ContributorsKleitz, Freddy
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typemémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise
Formatxiv, 97 f., application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0142 seconds