L’avènement des énergies renouvelables, notamment offshore, et la nécessité de transporter l’électricité sur des distances toujours plus grandes tout en réduisant les pertes en ligne requièrent la mise en place d’un nouveau réseau électrique plus performant, le supergrid. L’amélioration des sous-stations ultra haute tension en courant alternatif (UHVAC) de type poste sous enveloppe métallique (PSEM), i.e. la réduction de leur empreinte au sol ou leur montée en tension, s’inscrit parmi les défis engendrés par le développement du supergrid. L’amélioration de la tenue aux contraintes électrothermiques des isolants solides employés dans les PSEM a été identifiée comme le principal verrou technologique pour le perfectionnement de ces appareillages, déjà pleinement maîtrisés en HVAC. Les travaux présentés dans ce manuscrit ont été motivés par la nécessité de développer un matériau isolant électrique plus performant que les matériaux existant actuellement sur le marché. L’un des matériaux couramment employés pour la fabrication d’isolants solides pour PSEM, une matrice époxy-anhydride chargée d’alumine micrométrique, a servi de référence commerciale à notre étude. Suite à une étude bibliographique, nous avons choisi de conserver la matrice époxy du système commercial de référence et de jouer sur les charges inorganiques employées pour optimiser les propriétés du matériau isolant. Les travaux présentés mettent en évidence l’influence de la nature des charges inorganiques (alumine ou nitrure de bore hexagonal), de leur facteur de forme (quasi sphérique ou lamellaire) et de leur fraction volumique sur la conductivité thermique, le coefficient d’expansion thermique, les propriétés mécaniques dynamiques, les propriétés diélectriques, la conductivité électrique à haute tension (DC) et la rigidité diélectrique (AC) des matériaux composites. L’étude expérimentale des relations structure-propriétés est complétée par un travail de modélisation des propriétés diélectriques et de la conductivité thermique des matériaux composites. / The integration of renewable energies to the power grid requires its modification in order to ensure its stability, security and efficiency. Improving ultra-high voltage alternative current (UHVAC) gas insulated substations (GIS), e.g. reducing their size or increasing their voltage, is one of the challenges induced by the development of the future power grid, the supergrid. Increasing the ability of solid insulators used in such equipment to withstand electro-thermal stress has been identified as the main obstacle to overcome. The work presented in this manuscript has been motivated by the necessity to develop more efficient electrical insulating materials compared to commercially available ones. An epoxy-anhydride matrix filled with micron sized alumina, often used to produce GIS solid insulators, has been used as a reference for this study. We decided to keep the matrix of the reference material throughout our work and to concentrate on the filler influence in order to optimize the properties of the composites. The impact of the nature of the filler (alumina or hexagonal boron nitride), its shape factor (platelets or almost spherical particles) and its volume fraction upon thermal conductivity, coefficient of thermal expansion, dynamic mechanical properties, dielectric properties, high voltage direct current (DC) conductivity and AC breakdown strength have been highlighted. The experimental study of structure-property relationships is completed by dielectric properties and thermal conductivity modelling using the effective medium theory.
Identifer | oai:union.ndltd.org:theses.fr/2019LYSEI021 |
Date | 02 April 2019 |
Creators | Desmars, Loriane |
Contributors | Lyon, Galy, Jocelyne, Proust, Sébastien |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0024 seconds