Return to search

Ambiente para avaliação de algoritmos de processamento de imagens médicas. / Environment for medical image processing algorithms assessment.

Constantemente, uma variedade de novos métodos de processamento de imagens é apresentada à comunidade. Porém poucos têm provado sua utilidade na rotina clínica. A análise e comparação de diferentes abordagens por meio de uma mesma metodologia são essenciais para a qualificação do projeto de um algoritmo. Porém, é difícil comparar o desempenho e adequabilidade de diferentes algoritmos de uma mesma maneira. A principal razão deve-se à dificuldade para avaliar exaustivamente um software, ou pelo menos, testá-lo num conjunto abrangente e diversificado de casos clínicos. Muitas áreas - como o desenvolvimento de software e treinamentos em Medicina - necessitam de um conjunto diverso e abrangente de dados sobre imagens e informações associadas. Tais conjuntos podem ser utilizados para desenvolver, testar e avaliar novos softwares clínicos, utilizando dados públicos. Este trabalho propõe o desenvolvimento de um ambiente de base de imagens médicas de diferentes modalidades para uso livre em diferentes propósitos. Este ambiente - implementado como uma arquitetura de base distribuída de imagens - armazena imagens médicas com informações de aquisição, laudos, algoritmos de processamento de imagens, gold standards e imagens pós-processadas. O ambiente também possui um modelo de revisão de documentos que garante a qualidade dos conjuntos de dados. Como exemplo da facilidade e praticidade de uso, são apresentadas as avaliações de duas categorias de métodos de processamento de imagens médicas: segmentação e compressão. Em adição, a utilização do ambiente em outras atividades, como no projeto do arquivo didático digital do HC-FMUSP, demonstra a robustez da arquitetura proposta e sua aplicação em diferentes propósitos. / Constantly, a variety of new image processing methods are presented to the community. However, few of them have proved to be useful when used in clinical routine. The task of analyzing and comparing different algorithms, methods and applications through a sound testing is an essential qualification of algorithm design. However, it is usually very difficult to compare the performance and adequacy of different algorithms in the same way. The main reason is due to the difficulty to assess exhaustively the software, or at least using a comprehensive and diverse number of clinical cases for comparison. Several areas such as software development, image processing and medical training need a diverse and comprehensive dataset of images and related information. Such datasets could be used to develop, test and evaluate new medical software, using public data. This work presents the development of a free, online, multipurpose and multimodality medical image database environment. The environment, implemented such as a distributed medical image database, stores medical images, reports, image processing softwares, gold standards and post-processed images. Also, this environment implements a peer review model which assures the quality of all datasets. As an example of feasibility and easyness of use, it is shown the evaluation in two categories of medical image processing methods: segmentation and compression. In addition, the use of the set of applications proposed in this work in other activities, such as the HC-FMUSP digital teaching file, shows the robustness of the proposed architecture and its applicability on different purposes.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-19042007-165507
Date20 December 2006
CreatorsMarcelo dos Santos
ContributorsSérgio Shiguemi Furuie, Fausto Haruki Hironaka, Paulo Mazzoncini de Azevedo Marques, Lincoln de Assis Moura Junior, Agma Juci Machado Traina
PublisherUniversidade de São Paulo, Engenharia Elétrica, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds