Return to search

Análise de carteiras em tempo discreto / Discrete time portfolio analysis

Nesta dissertação, o modelo de seleção de carteiras de Markowitz será estendido com uma análise em tempo discreto e hipóteses mais realísticas. Um produto tensorial finito de densidades Erlang será usado para aproximar a densidade de probabilidade multivariada dos retornos discretos uniperiódicos de ativos dependentes. A Erlang é um caso particular da distribuição Gama. Uma mistura finita pode gerar densidades multimodais não-simétricas e o produto tensorial generaliza este conceito para dimensões maiores. Assumindo que a densidade multivariada foi independente e identicamente distribuída (i.i.d.) no passado, a aproximação pode ser calibrada com dados históricos usando o critério da máxima verossimilhança. Este é um problema de otimização em larga escala, mas com uma estrutura especial. Assumindo que esta densidade multivariada será i.i.d. no futuro, então a densidade dos retornos discretos de uma carteira de ativos com pesos não-negativos será uma mistura finita de densidades Erlang. O risco será calculado com a medida Downside Risk, que é convexa para determinados parâmetros, não é baseada em quantis, não causa a subestimação do risco e torna os problemas de otimização uni e multiperiódico convexos. O retorno discreto é uma variável aleatória multiplicativa ao longo do tempo. A distribuição multiperiódica dos retornos discretos de uma seqüência de T carteiras será uma mistura finita de distribuições Meijer G. Após uma mudança na medida de probabilidade para a composta média, é possível calcular o risco e o retorno, que levará à fronteira eficiente multiperiódica, na qual cada ponto representa uma ou mais seqüências ordenadas de T carteiras. As carteiras de cada seqüência devem ser calculadas do futuro para o presente, mantendo o retorno esperado no nível desejado, o qual pode ser função do tempo. Uma estratégia de alocação dinâmica de ativos é refazer os cálculos a cada período, usando as novas informações disponíveis. Se o horizonte de tempo tender a infinito, então a fronteira eficiente, na medida de probabilidade composta média, tenderá a um único ponto, dado pela carteira de Kelly, qualquer que seja a medida de risco. Para selecionar um dentre vários modelos de otimização de carteira, é necessário comparar seus desempenhos relativos. A fronteira eficiente de cada modelo deve ser traçada em seu respectivo gráfico. Como os pesos dos ativos das carteiras sobre estas curvas são conhecidos, é possível traçar todas as curvas em um mesmo gráfico. Para um dado retorno esperado, as carteiras eficientes dos modelos podem ser calculadas, e os retornos realizados e suas diferenças ao longo de um backtest podem ser comparados. / In this thesis, Markowitz’s portfolio selection model will be extended by means of a discrete time analysis and more realistic hypotheses. A finite tensor product of Erlang densities will be used to approximate the multivariate probability density function of the single-period discrete returns of dependent assets. The Erlang is a particular case of the Gamma distribution. A finite mixture can generate multimodal asymmetric densities and the tensor product generalizes this concept to higher dimensions. Assuming that the multivariate density was independent and identically distributed (i.i.d.) in the past, the approximation can be calibrated with historical data using the maximum likelihood criterion. This is a large-scale optimization problem, but with a special structure. Assuming that this multivariate density will be i.i.d. in the future, then the density of the discrete returns of a portfolio of assets with nonnegative weights will be a finite mixture of Erlang densities. The risk will be calculated with the Downside Risk measure, which is convex for certain parameters, is not based on quantiles, does not cause risk underestimation and makes the single and multiperiod optimization problems convex. The discrete return is a multiplicative random variable along the time. The multiperiod distribution of the discrete returns of a sequence of T portfolios will be a finite mixture of Meijer G distributions. After a change of the distribution to the average compound, it is possible to calculate the risk and the return, which will lead to the multiperiod efficient frontier, where each point represents one or more ordered sequences of T portfolios. The portfolios of each sequence must be calculated from the future to the present, keeping the expected return at the desired level, which can be a function of time. A dynamic asset allocation strategy is to redo the calculations at each period, using new available information. If the time horizon tends to infinite, then the efficient frontier, in the average compound probability measure, will tend to only one point, given by the Kelly’s portfolio, whatever the risk measure is. To select one among several portfolio optimization models, it is necessary to compare their relative performances. The efficient frontier of each model must be plotted in its respective graph. As the weights of the assets of the portfolios on these curves are known, it is possible to plot all curves in the same graph. For a given expected return, the efficient portfolios of the models can be calculated, and the realized returns and their differences along a backtest can be compared.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-24022005-005812
Date14 April 2004
CreatorsKato, Fernando Hideki
ContributorsSiqueira, Jose de Oliveira
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0032 seconds