• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bayesian and classical inference for the generalized gamma distribution and related models / Análise clássica e Bayesiana para a distribuição gama generalizada e modelos relacionados

Ramos, Pedro Luiz 22 February 2018 (has links)
The generalized gamma (GG) distribution is an important model that has proven to be very flexible in practice for modeling data from several areas. This model has important sub-models, such as the Weibull, gamma, lognormal, Nakagami-m distributions, among others. In this work, our main objective is to develop different estimation procedures for the unknown parameters of the generalized gamma distribution and related models (Nakagami-m and gamma), considering both classical and Bayesian approaches. Under the Bayesian approach, we provide in a simple way necessary and sufficient conditions to check whether or not objective priors lead proper posterior distributions for the Nakagami, gamma, and GG distributions. As a result, one can easily check if the obtained posterior is proper or improper directly looking at the behavior of the improper prior. These theorems are applied to different objective priors such as Jeffreyss rule, Jeffreys prior, maximal data information prior and reference priors. Simulation studies were conducted to investigate the performance of the Bayes estimators. Moreover, maximum a posteriori (MAP) estimators for the Nakagami and gamma distribution that have simple closed-form expressions are proposed Numerical results demonstrate that the MAP estimators outperform the existing estimation procedures and produce almost unbiased estimates for the fading parameter even for a small sample size. Finally, a new lifetime distribution that is expressed as a two-component mixture of the GG distribution is presented. / A distribuição gama Generalizada (GG) possui um papel fundamental para modelar dados em diversas áreas. Tal distribuição possui como casos particulares importantes distribuições, tais como, Weibull, Gama, lognormal, Nakagami-m, dentre outras. Nesta tese, tem-se como objetivo principal, considerando as abordagens clássica e Bayesiana, desenvolver diferentes procedimentos de estimação para os parâmetros da distribuição gama generalizada e de alguns dos seus casos particulares dentre eles as distribuições Nakagami-m e Gama. Do ponto de vista Bayesiano, iremos propor de forma simples, condições suficientes e necessárias para verificar se diferentes distribuições a priori não-informativas impróprias conduzem a distribuições posteriori próprias. Tais resultados são apresentados para as distribuições Nakagami-m, gama e gama generalizada. Assim, com a criação de novas prioris não-informativas, para tais modelos, futuros pesquisadores poderão utilizar nossos resultados para verificar se as distribuições a posteriori obtidas são impróprias ou não. Aplicações dos teoremas propostos são apresentados em diferentes prioris objetivas, tais como, a regra de Jeffreys, priori Jeffreys, priori maximal data information e prioris de referência. Iremos também realizar estudos de simulação para investigar a influência destas prioris nas estimativas a posteriori. Além disso, são propostos estimadores de máxima a posteriori em forma fechada para as distribuições Nakagami-m e Gama. Por meio de estudos de simulação verificamos que tais estimadores superam os procedimentos de estimação existentes e produzem estimativas quase não-viciadas para os parâmetros de interesse. Por fim, apresentamos uma nova distribuição obtida considerando um modelo de mistura de distribuições gama generalizada.
2

Modelos para dados de sobrevivência na presença de diferentes esquemas de ativação baseados na distribuição geométrica

Roman, Mari 08 April 2013 (has links)
Made available in DSpace on 2016-06-02T20:04:52Z (GMT). No. of bitstreams: 1 5104.pdf: 2493280 bytes, checksum: 296329e73498a367b56e93dcbe6f0aaa (MD5) Previous issue date: 2013-04-08 / Financiadora de Estudos e Projetos / In this thesis new families of survival distributions are proposed. Those distributions are derived by assuming a latent activation structure to explain the occurrence of the event of interest. In general, the competitive causes may have different activation mechanisms. Here we assume three different ones, namely, fisrt, random and last actvation mechanisms. The presence of cure fraction are also addressed in two contexts. The models assumed that the number of causes follows a Geometric distribution and the lifetime for these causes follows an Exponential distribution, and a Gamma Generalized distribution. The properties of the proposed distributions are discussed, including a formal proof of its probability density function and explicit algebraic formulas for its reliability and failure rate functions, moments, order statistics and modal value. Inferetial procedure is based on frequentist and Bayesian perspectives. Moreover, Bayesian case influence diagnostics based in -divergence, with include Kulback Leibler divergence measure as a particular case, are developed. Simulation studies are performed and experimental results are illustrated based in real datasets. / Nesta tese, novas famílias de distribuições são propostas para modelar dados de tempo de vida. Essas distribuições são obtidas assumindo que a ocorrência do evento de interesse é explicada por uma estrutura latente de ativação. Em geral, as causas competitivas podem ter diferentes mecanismos de ativação, consideramos os casos: primeiro, último e aleatório. A presença de fração de curados é considerada nestes contextos. Os modelos assumem que o número de causas de risco tem distribuição de probabilidade Geométrica; e o tempo de ativação desses fatores segue distribuição Exponencial ou Gama Generalizada. Propriedades das distribuições propostas são discutidas, incluindo obtenção da função densidade de probabilidade e fórmulas explícitas da função de risco, momentos, estatística de ordem e valor modal. Outro objetivo deste trabalho é o desenvolvimento de processos inferenciais nas perspectivas clássica e bayesiana. Além disso, as medidas bayesianas de diagnóstico baseadas na divergência, que incluem a divergência de Kulback Leibler como caso particular, são consideradas para detectar observações influentes. Estudos de simulação são realizados e resultados experimentais são obtidos para conjuntos de dados reais.
3

Modelos de regressão em análise de sobrevivência: uma aplicação na modelagem do tempo de vida de Micrurus corallinus em cativeiro / Regression models in survival analysis: a captivity Micrurus corallinus lifetime application modeling

Sousa, Glória Cristina Vieira de 11 February 2019 (has links)
Os dados de sobrevivência possuem peculiaridades que necessitam de uma atenção especial no momento em que se deseja realizar uma análise nos mesmos. Em tais dados é comum a presença de censuras e sua variável resposta é definida como o tempo de vida até a ocorrência de um evento de interesse. Existem distribuições que acolhem dados de sobrevivência, como as distribuições exponencial, Weibull, gama, gama generalizada, entre outras, assim como seus respectivos modelos de regressão adaptados para esse tipo de estudo. Os modelos de regressão exponencial e Weibull são os mais citados na literatura por terem fácil aplicação e se modelarem bem aos dados. O modelo de regressão gama generalizado geralmente se adapta melhor aos dados por ter três parâmetros, assim como o modelo de regressão log-logístico, que é visto como uma alternativa à distribuição Weibull e é muito utilizado por ter formas explícitas para a sua função de sobrevivência e de falha. No entanto, esses modelos ainda possuem restrições e, por conta disso, novas famílias de modelos de regressão estão sendo desenvolvidas na literatura, assim como a família de distribuições odd log-logística generalizada, que pretende oferecer melhores ajustes pois aparenta ter capacidade de modelar diferentes tipos de dados. O objetivo dessa dissertação foi aplicar técnicas de análise de sobrevivência na modelagem dos tempos de vida de Micrurus corallinus, ajustando os modelos já presentes na literatura e o modelo proposto odd log-logística generalizada Weibull (OLLG-W). Conclui-se que o modelo de regressão que se mostrou adequado aos dados foi o log-logístico e o modelo de regressão OLLG-W não apresentou nenhuma vantagem em relação aos que já são frequentes na literatura. / Survival data hold special attention-needed peculiarities the moment you intend to realize an analysis on. These data own censorships and their variable responses are defined as lifetime to interest- event occurrence. There are distributions that harbor these data, such as exponential distribution, Weibull, gamma, generalized gamma, among others, just as their respective event-adapted regression models. Exponential regression and Weibull models are the most literature recurrent, in view of their easy application and appropriate data modeling. The generalized gamma regression model usually is a better fit to the data, due to its three-parameter comprise, just as the log-logistic regression model, which is seen as an alternative to Weibull distribution and is heavily utilized for it\'s explicit shapes to survivability and fail functions. Nonetheless, these models still retain restrictions and, on account of that, new regression model families are being developed, as in the log logistic generalized distribution family, which intends to offer better settings due to its different real data modeling ability. The purpose of this dissertation was to apply survival analysis techniques in Micrurus corallinus lifetime modeling, adjusting already existing models and the proposed Weibull generalized odd log logistic model (OLLG-W). We came to the conclusion that the adequate regression model to Micrurus corallinus data was the log-logistic model. The OLLG-W model didn\'t offer any benefits when compared to literature-recurrent ones.
4

Análise de carteiras em tempo discreto / Discrete time portfolio analysis

Kato, Fernando Hideki 14 April 2004 (has links)
Nesta dissertação, o modelo de seleção de carteiras de Markowitz será estendido com uma análise em tempo discreto e hipóteses mais realísticas. Um produto tensorial finito de densidades Erlang será usado para aproximar a densidade de probabilidade multivariada dos retornos discretos uniperiódicos de ativos dependentes. A Erlang é um caso particular da distribuição Gama. Uma mistura finita pode gerar densidades multimodais não-simétricas e o produto tensorial generaliza este conceito para dimensões maiores. Assumindo que a densidade multivariada foi independente e identicamente distribuída (i.i.d.) no passado, a aproximação pode ser calibrada com dados históricos usando o critério da máxima verossimilhança. Este é um problema de otimização em larga escala, mas com uma estrutura especial. Assumindo que esta densidade multivariada será i.i.d. no futuro, então a densidade dos retornos discretos de uma carteira de ativos com pesos não-negativos será uma mistura finita de densidades Erlang. O risco será calculado com a medida Downside Risk, que é convexa para determinados parâmetros, não é baseada em quantis, não causa a subestimação do risco e torna os problemas de otimização uni e multiperiódico convexos. O retorno discreto é uma variável aleatória multiplicativa ao longo do tempo. A distribuição multiperiódica dos retornos discretos de uma seqüência de T carteiras será uma mistura finita de distribuições Meijer G. Após uma mudança na medida de probabilidade para a composta média, é possível calcular o risco e o retorno, que levará à fronteira eficiente multiperiódica, na qual cada ponto representa uma ou mais seqüências ordenadas de T carteiras. As carteiras de cada seqüência devem ser calculadas do futuro para o presente, mantendo o retorno esperado no nível desejado, o qual pode ser função do tempo. Uma estratégia de alocação dinâmica de ativos é refazer os cálculos a cada período, usando as novas informações disponíveis. Se o horizonte de tempo tender a infinito, então a fronteira eficiente, na medida de probabilidade composta média, tenderá a um único ponto, dado pela carteira de Kelly, qualquer que seja a medida de risco. Para selecionar um dentre vários modelos de otimização de carteira, é necessário comparar seus desempenhos relativos. A fronteira eficiente de cada modelo deve ser traçada em seu respectivo gráfico. Como os pesos dos ativos das carteiras sobre estas curvas são conhecidos, é possível traçar todas as curvas em um mesmo gráfico. Para um dado retorno esperado, as carteiras eficientes dos modelos podem ser calculadas, e os retornos realizados e suas diferenças ao longo de um backtest podem ser comparados. / In this thesis, Markowitz’s portfolio selection model will be extended by means of a discrete time analysis and more realistic hypotheses. A finite tensor product of Erlang densities will be used to approximate the multivariate probability density function of the single-period discrete returns of dependent assets. The Erlang is a particular case of the Gamma distribution. A finite mixture can generate multimodal asymmetric densities and the tensor product generalizes this concept to higher dimensions. Assuming that the multivariate density was independent and identically distributed (i.i.d.) in the past, the approximation can be calibrated with historical data using the maximum likelihood criterion. This is a large-scale optimization problem, but with a special structure. Assuming that this multivariate density will be i.i.d. in the future, then the density of the discrete returns of a portfolio of assets with nonnegative weights will be a finite mixture of Erlang densities. The risk will be calculated with the Downside Risk measure, which is convex for certain parameters, is not based on quantiles, does not cause risk underestimation and makes the single and multiperiod optimization problems convex. The discrete return is a multiplicative random variable along the time. The multiperiod distribution of the discrete returns of a sequence of T portfolios will be a finite mixture of Meijer G distributions. After a change of the distribution to the average compound, it is possible to calculate the risk and the return, which will lead to the multiperiod efficient frontier, where each point represents one or more ordered sequences of T portfolios. The portfolios of each sequence must be calculated from the future to the present, keeping the expected return at the desired level, which can be a function of time. A dynamic asset allocation strategy is to redo the calculations at each period, using new available information. If the time horizon tends to infinite, then the efficient frontier, in the average compound probability measure, will tend to only one point, given by the Kelly’s portfolio, whatever the risk measure is. To select one among several portfolio optimization models, it is necessary to compare their relative performances. The efficient frontier of each model must be plotted in its respective graph. As the weights of the assets of the portfolios on these curves are known, it is possible to plot all curves in the same graph. For a given expected return, the efficient portfolios of the models can be calculated, and the realized returns and their differences along a backtest can be compared.
5

Análise de carteiras em tempo discreto / Discrete time portfolio analysis

Fernando Hideki Kato 14 April 2004 (has links)
Nesta dissertação, o modelo de seleção de carteiras de Markowitz será estendido com uma análise em tempo discreto e hipóteses mais realísticas. Um produto tensorial finito de densidades Erlang será usado para aproximar a densidade de probabilidade multivariada dos retornos discretos uniperiódicos de ativos dependentes. A Erlang é um caso particular da distribuição Gama. Uma mistura finita pode gerar densidades multimodais não-simétricas e o produto tensorial generaliza este conceito para dimensões maiores. Assumindo que a densidade multivariada foi independente e identicamente distribuída (i.i.d.) no passado, a aproximação pode ser calibrada com dados históricos usando o critério da máxima verossimilhança. Este é um problema de otimização em larga escala, mas com uma estrutura especial. Assumindo que esta densidade multivariada será i.i.d. no futuro, então a densidade dos retornos discretos de uma carteira de ativos com pesos não-negativos será uma mistura finita de densidades Erlang. O risco será calculado com a medida Downside Risk, que é convexa para determinados parâmetros, não é baseada em quantis, não causa a subestimação do risco e torna os problemas de otimização uni e multiperiódico convexos. O retorno discreto é uma variável aleatória multiplicativa ao longo do tempo. A distribuição multiperiódica dos retornos discretos de uma seqüência de T carteiras será uma mistura finita de distribuições Meijer G. Após uma mudança na medida de probabilidade para a composta média, é possível calcular o risco e o retorno, que levará à fronteira eficiente multiperiódica, na qual cada ponto representa uma ou mais seqüências ordenadas de T carteiras. As carteiras de cada seqüência devem ser calculadas do futuro para o presente, mantendo o retorno esperado no nível desejado, o qual pode ser função do tempo. Uma estratégia de alocação dinâmica de ativos é refazer os cálculos a cada período, usando as novas informações disponíveis. Se o horizonte de tempo tender a infinito, então a fronteira eficiente, na medida de probabilidade composta média, tenderá a um único ponto, dado pela carteira de Kelly, qualquer que seja a medida de risco. Para selecionar um dentre vários modelos de otimização de carteira, é necessário comparar seus desempenhos relativos. A fronteira eficiente de cada modelo deve ser traçada em seu respectivo gráfico. Como os pesos dos ativos das carteiras sobre estas curvas são conhecidos, é possível traçar todas as curvas em um mesmo gráfico. Para um dado retorno esperado, as carteiras eficientes dos modelos podem ser calculadas, e os retornos realizados e suas diferenças ao longo de um backtest podem ser comparados. / In this thesis, Markowitz’s portfolio selection model will be extended by means of a discrete time analysis and more realistic hypotheses. A finite tensor product of Erlang densities will be used to approximate the multivariate probability density function of the single-period discrete returns of dependent assets. The Erlang is a particular case of the Gamma distribution. A finite mixture can generate multimodal asymmetric densities and the tensor product generalizes this concept to higher dimensions. Assuming that the multivariate density was independent and identically distributed (i.i.d.) in the past, the approximation can be calibrated with historical data using the maximum likelihood criterion. This is a large-scale optimization problem, but with a special structure. Assuming that this multivariate density will be i.i.d. in the future, then the density of the discrete returns of a portfolio of assets with nonnegative weights will be a finite mixture of Erlang densities. The risk will be calculated with the Downside Risk measure, which is convex for certain parameters, is not based on quantiles, does not cause risk underestimation and makes the single and multiperiod optimization problems convex. The discrete return is a multiplicative random variable along the time. The multiperiod distribution of the discrete returns of a sequence of T portfolios will be a finite mixture of Meijer G distributions. After a change of the distribution to the average compound, it is possible to calculate the risk and the return, which will lead to the multiperiod efficient frontier, where each point represents one or more ordered sequences of T portfolios. The portfolios of each sequence must be calculated from the future to the present, keeping the expected return at the desired level, which can be a function of time. A dynamic asset allocation strategy is to redo the calculations at each period, using new available information. If the time horizon tends to infinite, then the efficient frontier, in the average compound probability measure, will tend to only one point, given by the Kelly’s portfolio, whatever the risk measure is. To select one among several portfolio optimization models, it is necessary to compare their relative performances. The efficient frontier of each model must be plotted in its respective graph. As the weights of the assets of the portfolios on these curves are known, it is possible to plot all curves in the same graph. For a given expected return, the efficient portfolios of the models can be calculated, and the realized returns and their differences along a backtest can be compared.

Page generated in 0.1046 seconds