• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

LIKELIHOOD INFERENCE FOR LOG-LOGISTIC DISTRIBUTION UNDER PROGRESSIVE TYPE-II RIGHT CENSORING

Alzahrani, Alya 10 1900 (has links)
<p>Censoring arises quite often in lifetime data. Its presence may be planned or unplanned. In this project, we demonstrate progressive Type-II right censoring when the underlying distribution is log-logistic. The objective is to discuss inferential methods for the unknown parameters of the distribution based on the maximum likelihood estimation method. The Newton-Raphson method is proposed as a numerical technique to solve the pertinent non-linear equations. In addition, confidence intervals for the unknown parameters are constructed based on (i) asymptotic normality of the maximum likelihood estimates, and (ii) percentile bootstrap resampling technique. A Monte Carlo simulation study is conducted to evaluate the performance of the methods of inference developed here. Some illustrative examples are also presented.</p> / Master of Science (MSc)
2

Modelos de regressão em análise de sobrevivência: uma aplicação na modelagem do tempo de vida de Micrurus corallinus em cativeiro / Regression models in survival analysis: a captivity Micrurus corallinus lifetime application modeling

Sousa, Glória Cristina Vieira de 11 February 2019 (has links)
Os dados de sobrevivência possuem peculiaridades que necessitam de uma atenção especial no momento em que se deseja realizar uma análise nos mesmos. Em tais dados é comum a presença de censuras e sua variável resposta é definida como o tempo de vida até a ocorrência de um evento de interesse. Existem distribuições que acolhem dados de sobrevivência, como as distribuições exponencial, Weibull, gama, gama generalizada, entre outras, assim como seus respectivos modelos de regressão adaptados para esse tipo de estudo. Os modelos de regressão exponencial e Weibull são os mais citados na literatura por terem fácil aplicação e se modelarem bem aos dados. O modelo de regressão gama generalizado geralmente se adapta melhor aos dados por ter três parâmetros, assim como o modelo de regressão log-logístico, que é visto como uma alternativa à distribuição Weibull e é muito utilizado por ter formas explícitas para a sua função de sobrevivência e de falha. No entanto, esses modelos ainda possuem restrições e, por conta disso, novas famílias de modelos de regressão estão sendo desenvolvidas na literatura, assim como a família de distribuições odd log-logística generalizada, que pretende oferecer melhores ajustes pois aparenta ter capacidade de modelar diferentes tipos de dados. O objetivo dessa dissertação foi aplicar técnicas de análise de sobrevivência na modelagem dos tempos de vida de Micrurus corallinus, ajustando os modelos já presentes na literatura e o modelo proposto odd log-logística generalizada Weibull (OLLG-W). Conclui-se que o modelo de regressão que se mostrou adequado aos dados foi o log-logístico e o modelo de regressão OLLG-W não apresentou nenhuma vantagem em relação aos que já são frequentes na literatura. / Survival data hold special attention-needed peculiarities the moment you intend to realize an analysis on. These data own censorships and their variable responses are defined as lifetime to interest- event occurrence. There are distributions that harbor these data, such as exponential distribution, Weibull, gamma, generalized gamma, among others, just as their respective event-adapted regression models. Exponential regression and Weibull models are the most literature recurrent, in view of their easy application and appropriate data modeling. The generalized gamma regression model usually is a better fit to the data, due to its three-parameter comprise, just as the log-logistic regression model, which is seen as an alternative to Weibull distribution and is heavily utilized for it\'s explicit shapes to survivability and fail functions. Nonetheless, these models still retain restrictions and, on account of that, new regression model families are being developed, as in the log logistic generalized distribution family, which intends to offer better settings due to its different real data modeling ability. The purpose of this dissertation was to apply survival analysis techniques in Micrurus corallinus lifetime modeling, adjusting already existing models and the proposed Weibull generalized odd log logistic model (OLLG-W). We came to the conclusion that the adequate regression model to Micrurus corallinus data was the log-logistic model. The OLLG-W model didn\'t offer any benefits when compared to literature-recurrent ones.
3

CURE RATE AND DESTRUCTIVE CURE RATE MODELS UNDER PROPORTIONAL ODDS LIFETIME DISTRIBUTIONS

FENG, TIAN January 2019 (has links)
Cure rate models, introduced by Boag (1949), are very commonly used while modelling lifetime data involving long time survivors. Applications of cure rate models can be seen in biomedical science, industrial reliability, finance, manufacturing, demography and criminology. In this thesis, cure rate models are discussed under a competing cause scenario, with the assumption of proportional odds (PO) lifetime distributions for the susceptibles, and statistical inferential methods are then developed based on right-censored data. In Chapter 2, a flexible cure rate model is discussed by assuming the number of competing causes for the event of interest following the Conway-Maxwell (COM) Poisson distribution, and their corresponding lifetimes of non-cured or susceptible individuals can be described by PO model. This provides a natural extension of the work of Gu et al. (2011) who had considered a geometric number of competing causes. Under right censoring, maximum likelihood estimators (MLEs) are obtained by the use of expectation-maximization (EM) algorithm. An extensive Monte Carlo simulation study is carried out for various scenarios, and model discrimination between some well-known cure models like geometric, Poisson and Bernoulli is also examined. The goodness-of-fit and model diagnostics of the model are also discussed. A cutaneous melanoma dataset example is used to illustrate the models as well as the inferential methods. Next, in Chapter 3, the destructive cure rate models, introduced by Rodrigues et al. (2011), are discussed under the PO assumption. Here, the initial number of competing causes is modelled by a weighted Poisson distribution with special focus on exponentially weighted Poisson, length-biased Poisson and negative binomial distributions. Then, a damage distribution is introduced for the number of initial causes which do not get destroyed. An EM-type algorithm for computing the MLEs is developed. An extensive simulation study is carried out for various scenarios, and model discrimination between the three weighted Poisson distributions is also examined. All the models and methods of estimation are evaluated through a simulation study. A cutaneous melanoma dataset example is used to illustrate the models as well as the inferential methods. In Chapter 4, frailty cure rate models are discussed under a gamma frailty wherein the initial number of competing causes is described by a Conway-Maxwell (COM) Poisson distribution in which the lifetimes of non-cured individuals can be described by PO model. The detailed steps of the EM algorithm are then developed for this model and an extensive simulation study is carried out to evaluate the performance of the proposed model and the estimation method. A cutaneous melanoma dataset as well as a simulated data are used for illustrative purposes. Finally, Chapter 5 outlines the work carried out in the thesis and also suggests some problems of further research interest. / Thesis / Doctor of Philosophy (PhD)
4

Sur les familles des lois de fonction de hasard unimodale : applications en fiabilité et analyse de survie

Saaidia, Noureddine 24 June 2013 (has links)
En fiabilité et en analyse de survie, les distributions qui ont une fonction de hasard unimodale ne sont pas nombreuses, qu'on peut citer: Gaussienne inverse ,log-normale, log-logistique, de Birnbaum-Saunders, de Weibull exponentielle et de Weibullgénéralisée. Dans cette thèse, nous développons les tests modifiés du Chi-deux pour ces distributions tout en comparant la distribution Gaussienne inverse avec les autres. Ensuite nousconstruisons le modèle AFT basé sur la distribution Gaussienne inverse et les systèmes redondants basés sur les distributions de fonction de hasard unimodale. / In reliability and survival analysis, distributions that have a unimodalor $\cap-$shape hazard rate function are not too many, they include: the inverse Gaussian,log-normal, log-logistic, Birnbaum-Saunders, exponential Weibull and power generalized Weibulldistributions. In this thesis, we develop the modified Chi-squared tests for these distributions,and we give a comparative study between the inverse Gaussian distribution and the otherdistributions, then we realize simulations. We also construct the AFT model based on the inverseGaussian distribution and redundant systems based on distributions having a unimodal hazard ratefunction.

Page generated in 0.1384 seconds