• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Combinação de projeções de volatilidade baseadas em medidas de risco para dados em alta frequência / Volatility forecast combination using risk measures based on high frequency data

Araújo, Alcides Carlos de 29 April 2016 (has links)
Operações em alta frequência demonstraram crescimento nos últimos anos; em decorrência disso, surgiu a necessidade de estudar o mercado de ações brasileiro no contexto dos dados em alta frequência. Os estimadores da volatilidade dos preços de ações utilizando dados de negociações em alta frequência são os principais objetos de estudo. Conforme Aldridge (2010) e Vuorenmaa (2013), o HFT foi definido como a rápida realocação de capital feita de modo que as transações possam ocorrer em milésimos de segundos por uso de algoritmos complexos que gerenciam envio de ordens, análise dos dados obtidos e tomada das melhores decisões de compra e venda. A principal fonte de informações para análise do HFT são os dados tick by tick, conhecidos como dados em alta frequência. Uma métrica oriunda da análise de dados em alta frequência e utilizada para gestão de riscos é a Volatilidade Percebida. Conforme Andersen et al. (2003), Pong et al. (2004), Koopman et al. (2005) e Corsi (2009) há um consenso na área de finanças de que as projeções da volatilidade utilizando essa métrica de risco são mais eficientes de que a estimativa da volatilidade por meio de modelos GARCH. Na gestão financeira, a projeção da volatilidade é uma ferramenta fundamental para provisionar reservas para possíveis perdas;, devido à existência de vários métodos de projeção da volatilidade e em decorrência desta necessidade torna-se necessário selecionar um modelo ou combinar diversas projeções. O principal desafio para combinar projeções é a escolha dos pesos: as diversas pesquisas da área têm foco no desenvolvimento de métodos para escolhê-los visando minimizar os erros de previsão. A literatura existente carece, no entanto, de uma proposição de método que considere o problema de eventual projeção de volatilidade abaixo do esperado. Buscando preencher essa lacuna, o objetivo principal desta tese é propor uma combinação dos estimadores da volatilidade dos preços de ações utilizando dados de negociações em alta frequência para o mercado brasileiro. Como principal ponto de inovação, propõe-se aqui de forma inédita a utilização da função baseada no Lower Partial Moment (LPM) para estimativa dos pesos para combinação das projeções. Ainda que a métrica LPM seja bastante conhecida na literatura, sua utilização para combinação de projeções ainda não foi analisada. Este trabalho apresenta contribuições ao estudo de combinações de projeções realizadas pelos modelos HAR, MIDAS, ARFIMA e Nearest Neighbor, além de propor dois novos métodos de combinação -- estes denominados por LPMFE (Lower Partial Moment Forecast Error) e DLPMFE (Discounted LPMFE). Os métodos demonstraram resultados promissores pretendem casos cuja pretensão seja evitar perdas acima do esperado e evitar provisionamento excessivo do ponto de vista orçamentário. / The High Frequency Trading (HFT) has grown significantly in the last years, in this way, this raises the need for research of the high frequency data on the Brazilian stock market.The volatility estimators of the asset prices using high frequency data are the main objects of study. According to Aldridge (2010) and Vuorenmaa (2013), the HFT was defined as the fast reallocation of trading capital that the negotiations may occur on milliseconds by complex algorithms scheduled for optimize the process of sending orders, data analysis and to make the best decisions of buy or sell. The principal information source for HFT analysis is the tick by tick data, called as high frequency data. The Realized Volatility is a risk measure from the high frequency data analysis, this metric is used for risk management.According to Andersen et al. (2003), Pong et al. (2004), Koopman et al.(2005) and Corsi (2009) there is a consensus in the finance field that the volatility forecast using this risk measure produce better results than estimating the volatility by GARCH models. The volatility forecasting is a key issue in the financial management to provision capital resources to possible losses. However, because there are several volatility forecast methods, this problem raises the need to choice a specific model or combines the projections. The main challenge to combine forecasts is the choice of the weights, with the aim of minimizingthe forecast errors, several research in the field have been focusing on development of methods to choice the weights.Nevertheless, it is missing in the literature the proposition of amethod which consider the minimization of the risk of an inefficient forecast for the losses protection. Aiming to fill the gap, the main goal of the thesis is to propose a combination of the asset prices volatility forecasts using high frequency data for Brazilian stock market. As the main focus of innovation, the thesis proposes, in an unprecedented way, the use of the function based on the Lower Partial Moment (LPM) to estimate the weights for the combination of volatility forecasts. Although the LPM measure is well known in the literature, the use of this metric for forecast combination has not been yet studied.The thesis contributes to the literature when studying the forecasts combination made by the models HAR, MIDAS, ARFIMA and Nearest Neighbor. The thesis also contributes when proposing two new methods of combinations, these methodologies are referred to as LPMFE (Lower Partial Moment Forecast Error) and DLPMFE (Discounted LPMFE). The methods have shown promising results when it is intended to avoid losses above the expected it is not intended to cause provisioning excess in the budget.
2

Combinação de projeções de volatilidade baseadas em medidas de risco para dados em alta frequência / Volatility forecast combination using risk measures based on high frequency data

Alcides Carlos de Araújo 29 April 2016 (has links)
Operações em alta frequência demonstraram crescimento nos últimos anos; em decorrência disso, surgiu a necessidade de estudar o mercado de ações brasileiro no contexto dos dados em alta frequência. Os estimadores da volatilidade dos preços de ações utilizando dados de negociações em alta frequência são os principais objetos de estudo. Conforme Aldridge (2010) e Vuorenmaa (2013), o HFT foi definido como a rápida realocação de capital feita de modo que as transações possam ocorrer em milésimos de segundos por uso de algoritmos complexos que gerenciam envio de ordens, análise dos dados obtidos e tomada das melhores decisões de compra e venda. A principal fonte de informações para análise do HFT são os dados tick by tick, conhecidos como dados em alta frequência. Uma métrica oriunda da análise de dados em alta frequência e utilizada para gestão de riscos é a Volatilidade Percebida. Conforme Andersen et al. (2003), Pong et al. (2004), Koopman et al. (2005) e Corsi (2009) há um consenso na área de finanças de que as projeções da volatilidade utilizando essa métrica de risco são mais eficientes de que a estimativa da volatilidade por meio de modelos GARCH. Na gestão financeira, a projeção da volatilidade é uma ferramenta fundamental para provisionar reservas para possíveis perdas;, devido à existência de vários métodos de projeção da volatilidade e em decorrência desta necessidade torna-se necessário selecionar um modelo ou combinar diversas projeções. O principal desafio para combinar projeções é a escolha dos pesos: as diversas pesquisas da área têm foco no desenvolvimento de métodos para escolhê-los visando minimizar os erros de previsão. A literatura existente carece, no entanto, de uma proposição de método que considere o problema de eventual projeção de volatilidade abaixo do esperado. Buscando preencher essa lacuna, o objetivo principal desta tese é propor uma combinação dos estimadores da volatilidade dos preços de ações utilizando dados de negociações em alta frequência para o mercado brasileiro. Como principal ponto de inovação, propõe-se aqui de forma inédita a utilização da função baseada no Lower Partial Moment (LPM) para estimativa dos pesos para combinação das projeções. Ainda que a métrica LPM seja bastante conhecida na literatura, sua utilização para combinação de projeções ainda não foi analisada. Este trabalho apresenta contribuições ao estudo de combinações de projeções realizadas pelos modelos HAR, MIDAS, ARFIMA e Nearest Neighbor, além de propor dois novos métodos de combinação -- estes denominados por LPMFE (Lower Partial Moment Forecast Error) e DLPMFE (Discounted LPMFE). Os métodos demonstraram resultados promissores pretendem casos cuja pretensão seja evitar perdas acima do esperado e evitar provisionamento excessivo do ponto de vista orçamentário. / The High Frequency Trading (HFT) has grown significantly in the last years, in this way, this raises the need for research of the high frequency data on the Brazilian stock market.The volatility estimators of the asset prices using high frequency data are the main objects of study. According to Aldridge (2010) and Vuorenmaa (2013), the HFT was defined as the fast reallocation of trading capital that the negotiations may occur on milliseconds by complex algorithms scheduled for optimize the process of sending orders, data analysis and to make the best decisions of buy or sell. The principal information source for HFT analysis is the tick by tick data, called as high frequency data. The Realized Volatility is a risk measure from the high frequency data analysis, this metric is used for risk management.According to Andersen et al. (2003), Pong et al. (2004), Koopman et al.(2005) and Corsi (2009) there is a consensus in the finance field that the volatility forecast using this risk measure produce better results than estimating the volatility by GARCH models. The volatility forecasting is a key issue in the financial management to provision capital resources to possible losses. However, because there are several volatility forecast methods, this problem raises the need to choice a specific model or combines the projections. The main challenge to combine forecasts is the choice of the weights, with the aim of minimizingthe forecast errors, several research in the field have been focusing on development of methods to choice the weights.Nevertheless, it is missing in the literature the proposition of amethod which consider the minimization of the risk of an inefficient forecast for the losses protection. Aiming to fill the gap, the main goal of the thesis is to propose a combination of the asset prices volatility forecasts using high frequency data for Brazilian stock market. As the main focus of innovation, the thesis proposes, in an unprecedented way, the use of the function based on the Lower Partial Moment (LPM) to estimate the weights for the combination of volatility forecasts. Although the LPM measure is well known in the literature, the use of this metric for forecast combination has not been yet studied.The thesis contributes to the literature when studying the forecasts combination made by the models HAR, MIDAS, ARFIMA and Nearest Neighbor. The thesis also contributes when proposing two new methods of combinations, these methodologies are referred to as LPMFE (Lower Partial Moment Forecast Error) and DLPMFE (Discounted LPMFE). The methods have shown promising results when it is intended to avoid losses above the expected it is not intended to cause provisioning excess in the budget.
3

Essays on asset allocation strategies for defined contribution plans

Basu, Anup K. January 2008 (has links)
Asset allocation is the most influential factor driving investment performance. While researchers have made substantial progress in the field of asset allocation since the introduction of mean-variance framework by Markowitz, there is little agreement about appropriate portfolio choice for multi-period long horizon investors. Nowhere this is more evident than trustees of retirement plans choosing different asset allocation strategies as default investment options for their members. This doctoral dissertation consists of four essays each of which explores either a novel or an unresolved issue in the area of asset allocation for individual retirement plan participants. The goal of the thesis is to provide greater insight into the subject of portfolio choice in retirement plans and advance scholarship in this field. The first study evaluates different constant mix or fixed weight asset allocation strategies and comments on their relative appeal as default investment options. In contrast to past research which deals mostly with theoretical or hypothetical models of asset allocation, we investigate asset allocation strategies that are actually used as default investment options by superannuation funds in Australia. We find that strategies with moderate allocation to stocks are consistently outperformed in terms of upside potential of exceeding the participant’s wealth accumulation target as well as downside risk of falling below that target by very aggressive strategies whose allocation to stocks approach 100%. The risk of extremely adverse wealth outcomes for plan participants does not appear to be very sensitive to asset allocation. Drawing on the evidence of the previous study, the second essay explores possible solutions to the well known problem of gender inequality in retirement investment outcomes. Using non-parametric stochastic simulation, we simulate iv and compare the retirement wealth outcomes for a hypothetical female and male worker under different assumptions about breaks in employment, superannuation contribution rates, and asset allocation strategies. We argue that modest changes in contribution and asset allocation strategy for the female plan participant are necessary to ensure an equitable wealth outcome in retirement. The findings provide strong evidence against gender-neutral default contribution and asset allocation policy currently institutionalized in Australia and other countries. In the third study we examine the efficacy of lifecycle asset allocation models which allocate aggressively to risky asset classes when the employee participants are young and gradually switch to more conservative asset classes as they approach retirement. We show that the conventional lifecycle strategies make a costly mistake by ignoring the change in portfolio size over time as a critical input in the asset allocation decision. Due to this portfolio size effect, which has hitherto remained unexplored in literature, the terminal value of accumulation in retirement account is critically dependent on the asset allocation strategy adopted by the participant in later years relative to early years. The final essay extends the findings of the previous chapter by proposing an alternative approach to lifecycle asset allocation which incorporates performance feedback. We demonstrate that strategies that dynamically alter allocation between growth and conservative asset classes at different points on the investment horizon based on cumulative portfolio performance relative to a set target generally result in superior wealth outcomes compared to those of conventional lifecycle strategies. The dynamic allocation strategy exhibits clear second-degree stochastic dominance over conventional strategies which switch assets in a deterministic manner as well as balanced diversified strategies.
4

Análise de carteiras em tempo discreto / Discrete time portfolio analysis

Kato, Fernando Hideki 14 April 2004 (has links)
Nesta dissertação, o modelo de seleção de carteiras de Markowitz será estendido com uma análise em tempo discreto e hipóteses mais realísticas. Um produto tensorial finito de densidades Erlang será usado para aproximar a densidade de probabilidade multivariada dos retornos discretos uniperiódicos de ativos dependentes. A Erlang é um caso particular da distribuição Gama. Uma mistura finita pode gerar densidades multimodais não-simétricas e o produto tensorial generaliza este conceito para dimensões maiores. Assumindo que a densidade multivariada foi independente e identicamente distribuída (i.i.d.) no passado, a aproximação pode ser calibrada com dados históricos usando o critério da máxima verossimilhança. Este é um problema de otimização em larga escala, mas com uma estrutura especial. Assumindo que esta densidade multivariada será i.i.d. no futuro, então a densidade dos retornos discretos de uma carteira de ativos com pesos não-negativos será uma mistura finita de densidades Erlang. O risco será calculado com a medida Downside Risk, que é convexa para determinados parâmetros, não é baseada em quantis, não causa a subestimação do risco e torna os problemas de otimização uni e multiperiódico convexos. O retorno discreto é uma variável aleatória multiplicativa ao longo do tempo. A distribuição multiperiódica dos retornos discretos de uma seqüência de T carteiras será uma mistura finita de distribuições Meijer G. Após uma mudança na medida de probabilidade para a composta média, é possível calcular o risco e o retorno, que levará à fronteira eficiente multiperiódica, na qual cada ponto representa uma ou mais seqüências ordenadas de T carteiras. As carteiras de cada seqüência devem ser calculadas do futuro para o presente, mantendo o retorno esperado no nível desejado, o qual pode ser função do tempo. Uma estratégia de alocação dinâmica de ativos é refazer os cálculos a cada período, usando as novas informações disponíveis. Se o horizonte de tempo tender a infinito, então a fronteira eficiente, na medida de probabilidade composta média, tenderá a um único ponto, dado pela carteira de Kelly, qualquer que seja a medida de risco. Para selecionar um dentre vários modelos de otimização de carteira, é necessário comparar seus desempenhos relativos. A fronteira eficiente de cada modelo deve ser traçada em seu respectivo gráfico. Como os pesos dos ativos das carteiras sobre estas curvas são conhecidos, é possível traçar todas as curvas em um mesmo gráfico. Para um dado retorno esperado, as carteiras eficientes dos modelos podem ser calculadas, e os retornos realizados e suas diferenças ao longo de um backtest podem ser comparados. / In this thesis, Markowitz’s portfolio selection model will be extended by means of a discrete time analysis and more realistic hypotheses. A finite tensor product of Erlang densities will be used to approximate the multivariate probability density function of the single-period discrete returns of dependent assets. The Erlang is a particular case of the Gamma distribution. A finite mixture can generate multimodal asymmetric densities and the tensor product generalizes this concept to higher dimensions. Assuming that the multivariate density was independent and identically distributed (i.i.d.) in the past, the approximation can be calibrated with historical data using the maximum likelihood criterion. This is a large-scale optimization problem, but with a special structure. Assuming that this multivariate density will be i.i.d. in the future, then the density of the discrete returns of a portfolio of assets with nonnegative weights will be a finite mixture of Erlang densities. The risk will be calculated with the Downside Risk measure, which is convex for certain parameters, is not based on quantiles, does not cause risk underestimation and makes the single and multiperiod optimization problems convex. The discrete return is a multiplicative random variable along the time. The multiperiod distribution of the discrete returns of a sequence of T portfolios will be a finite mixture of Meijer G distributions. After a change of the distribution to the average compound, it is possible to calculate the risk and the return, which will lead to the multiperiod efficient frontier, where each point represents one or more ordered sequences of T portfolios. The portfolios of each sequence must be calculated from the future to the present, keeping the expected return at the desired level, which can be a function of time. A dynamic asset allocation strategy is to redo the calculations at each period, using new available information. If the time horizon tends to infinite, then the efficient frontier, in the average compound probability measure, will tend to only one point, given by the Kelly’s portfolio, whatever the risk measure is. To select one among several portfolio optimization models, it is necessary to compare their relative performances. The efficient frontier of each model must be plotted in its respective graph. As the weights of the assets of the portfolios on these curves are known, it is possible to plot all curves in the same graph. For a given expected return, the efficient portfolios of the models can be calculated, and the realized returns and their differences along a backtest can be compared.
5

Análise de carteiras em tempo discreto / Discrete time portfolio analysis

Fernando Hideki Kato 14 April 2004 (has links)
Nesta dissertação, o modelo de seleção de carteiras de Markowitz será estendido com uma análise em tempo discreto e hipóteses mais realísticas. Um produto tensorial finito de densidades Erlang será usado para aproximar a densidade de probabilidade multivariada dos retornos discretos uniperiódicos de ativos dependentes. A Erlang é um caso particular da distribuição Gama. Uma mistura finita pode gerar densidades multimodais não-simétricas e o produto tensorial generaliza este conceito para dimensões maiores. Assumindo que a densidade multivariada foi independente e identicamente distribuída (i.i.d.) no passado, a aproximação pode ser calibrada com dados históricos usando o critério da máxima verossimilhança. Este é um problema de otimização em larga escala, mas com uma estrutura especial. Assumindo que esta densidade multivariada será i.i.d. no futuro, então a densidade dos retornos discretos de uma carteira de ativos com pesos não-negativos será uma mistura finita de densidades Erlang. O risco será calculado com a medida Downside Risk, que é convexa para determinados parâmetros, não é baseada em quantis, não causa a subestimação do risco e torna os problemas de otimização uni e multiperiódico convexos. O retorno discreto é uma variável aleatória multiplicativa ao longo do tempo. A distribuição multiperiódica dos retornos discretos de uma seqüência de T carteiras será uma mistura finita de distribuições Meijer G. Após uma mudança na medida de probabilidade para a composta média, é possível calcular o risco e o retorno, que levará à fronteira eficiente multiperiódica, na qual cada ponto representa uma ou mais seqüências ordenadas de T carteiras. As carteiras de cada seqüência devem ser calculadas do futuro para o presente, mantendo o retorno esperado no nível desejado, o qual pode ser função do tempo. Uma estratégia de alocação dinâmica de ativos é refazer os cálculos a cada período, usando as novas informações disponíveis. Se o horizonte de tempo tender a infinito, então a fronteira eficiente, na medida de probabilidade composta média, tenderá a um único ponto, dado pela carteira de Kelly, qualquer que seja a medida de risco. Para selecionar um dentre vários modelos de otimização de carteira, é necessário comparar seus desempenhos relativos. A fronteira eficiente de cada modelo deve ser traçada em seu respectivo gráfico. Como os pesos dos ativos das carteiras sobre estas curvas são conhecidos, é possível traçar todas as curvas em um mesmo gráfico. Para um dado retorno esperado, as carteiras eficientes dos modelos podem ser calculadas, e os retornos realizados e suas diferenças ao longo de um backtest podem ser comparados. / In this thesis, Markowitz’s portfolio selection model will be extended by means of a discrete time analysis and more realistic hypotheses. A finite tensor product of Erlang densities will be used to approximate the multivariate probability density function of the single-period discrete returns of dependent assets. The Erlang is a particular case of the Gamma distribution. A finite mixture can generate multimodal asymmetric densities and the tensor product generalizes this concept to higher dimensions. Assuming that the multivariate density was independent and identically distributed (i.i.d.) in the past, the approximation can be calibrated with historical data using the maximum likelihood criterion. This is a large-scale optimization problem, but with a special structure. Assuming that this multivariate density will be i.i.d. in the future, then the density of the discrete returns of a portfolio of assets with nonnegative weights will be a finite mixture of Erlang densities. The risk will be calculated with the Downside Risk measure, which is convex for certain parameters, is not based on quantiles, does not cause risk underestimation and makes the single and multiperiod optimization problems convex. The discrete return is a multiplicative random variable along the time. The multiperiod distribution of the discrete returns of a sequence of T portfolios will be a finite mixture of Meijer G distributions. After a change of the distribution to the average compound, it is possible to calculate the risk and the return, which will lead to the multiperiod efficient frontier, where each point represents one or more ordered sequences of T portfolios. The portfolios of each sequence must be calculated from the future to the present, keeping the expected return at the desired level, which can be a function of time. A dynamic asset allocation strategy is to redo the calculations at each period, using new available information. If the time horizon tends to infinite, then the efficient frontier, in the average compound probability measure, will tend to only one point, given by the Kelly’s portfolio, whatever the risk measure is. To select one among several portfolio optimization models, it is necessary to compare their relative performances. The efficient frontier of each model must be plotted in its respective graph. As the weights of the assets of the portfolios on these curves are known, it is possible to plot all curves in the same graph. For a given expected return, the efficient portfolios of the models can be calculated, and the realized returns and their differences along a backtest can be compared.

Page generated in 0.0856 seconds