We study the properties of Gibbs measures for functions with d-summable variation defined on a subshift X. Based on Meyerovitch\'s work from 2013, we prove that if X is a subshift of finite type (SFT), then any equilibrium measure is also a Gibbs measure. Although the definition provided by Meyerovitch does not make any mention to conditional expectations, we show that in the case where X is a SFT it is possible to characterize these measures in terms of more familiar notions presented in the literature. / Nós estudamos as propriedades de medidas de Gibbs para funções com variação d-somável definidas em um subshift X. Baseado no trabalho de Meyerovitch de 2013, provamos que se X é um subshift de tipo finito (STF), então qualquer medida de equilíbrio é também uma medida de Gibbs. Embora a definição fornecida por Meyerovitch não faz qualquer menção à esperanças condicionais, mostramos que no caso em que X é um STF, é possível caracterizar estas medidas em termos de noções mais familiares apresentadas na literatura.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-28062019-073823 |
Date | 28 August 2015 |
Creators | Kimura, Bruno Hideki Fukushima |
Contributors | Proença, Rodrigo Bissacot |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | English |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0015 seconds