Les panneaux d'isolation sous vide (PIV) sont constitués d'un matériau de coeur nanoporeux en dépression, et d'une enveloppe barrière aux gaz atmosphériques. Leur conductivité thermique initiale est de l'ordre de 5 mW/(m.K), cinq à huit fois inférieure à celle des isolants conventionnels. Au regard des isolants classiques, le questionnement le plus important concerne le couple performance / durabilité. La réponse passe par la compréhension et la modélisation des transferts thermiques et massiques dans les PIV. De nombreuses études expérimentales et numériques ont conduit à un modèle semi-empirique pour la conductivité thermique apparente d'un PIV, prenant en compte les différents modes de transfert dans le panneau. Ce modèle met en lumière le principal mécanisme de vieillissement : du fait de la perméation gazeuse à travers l'enveloppe, pression et humidité dans le panneau remontent au cours du temps, ce qui engendre une augmentation de la conductivité thermique. L'étude des transferts massiques à travers l'enveloppe est particulièrement délicate. Premièrement, la modélisation de la perméabilité des enveloppes utilisées (membranes multicouches de films polymères métallisés) repose sur la prise en compte des micro-défauts dans les couches métallisées, qui gouvernent le débit total de perméation. Deuxièmement, les valeurs des perméabilités à mesurer sont trop basses pour beaucoup de techniques conventionnelles. Troisièmement, une analyse de la littérature montre une lacune de taille en ce qui concerne la prise en compte de l'influence conjointe de la température et de l'humidité relative dans le modèle classique de perméation gazeuse. En se basant sur des données expérimentales existantes, le rôle de l'humidité relative sur les propriétés barrières des enveloppes des PIV est mis en lumière. L'existence d'un couplage entre les flux des différents gaz est posé comme hypothèse de départ à la mise en place d'un nouveau modèle de perméation gazeuse, prenant en compte pression partielle et pression totale, et donc la concentration molaire de chaque gaz dans le mélange. Les prédictions de ce modèle sont comparées à celles issues du modèle classique de perméation gazeuse, et les différences de comportement entre les deux modèles sont mises en avant. Deux séries de mesure de perméance sont ensuite mises en place, par vieillissement de PIV en enceintes climatiques et par mesure directe de perméance sur échantillons de membrane (méthode manométrique). Ces mesures sont menées à température et humidité relative fixées (T = 48 °C, φ = 65 % HR), mais avec une pression totale variant de 80 mbar à 1 bar. Cette campagne de mesure exploratoire ne montre pas d'influence notable de la pression totale sur la perméabilité à la vapeur d'eau. Ces résultats permettent de dresser les premières conclusions sur le rôle respectif de la pression partielle et de la pression totale, et de proposer une suite à la démarche expérimentale initiée dans cette étude. / Vacuum insulation panels (VIPs) are composed of an evacuated nanoporous core material, and a barrier envelope to atmospheric gases. Their apparent thermal conductivity after manufacturing is approximately 5 mW/(m.K), five to eight times lower than that of conventional insulation materials. Compared to conventional insulation materials, the most important issue remains in the duality performance / durability. The answer lies in the understanding and modeling of heat and mass transfer in VIPs. Many experimental and numerical studies about heat transfer led to a semi-empirical model for the apparent thermal conductivity of a VIP, taking into account the different transfer modes in the panel. This model highlights the main mechanism of VIPs aging: due to gas permeation through the envelope, pressure and humidity in the panel increase gradually over time, which causes an increase of the apparent thermal conductivity. The study of mass transfer through the gas barrier envelope is particularly difficult for three main reasons. First, the permeation modeling of VIPs envelopes (multilayer membranes with metalized polymer films) has to take into account micro-defects in the metallic layers, which play a key role in the total permeation rate. Second, the permeances to be measured are too low for many conventional methods, especially for dry air. Third, a literature analysis shows that the classical model for mass transfer through barrier envelopes does not take into account the combined influence of temperature and relative humidity, which is a great lacuna. From experimental data available in the literature, the role of relative humidity on the barrier properties of the VIPs envelopes is highlighted. The existence of a coupling phenomenon between the mass flows of the various gases is hypothesized to start the establishment of a new gas permeation model, which takes into account partial pressure and total pressure, and thus the molar concentration of each gas in the mixture. The predictions of this model are compared with predictions based on the classical model for gas permeation, and the differences between the two models are analyzed. Two experimental campaign are then implemented to measure envelope permeance, through whole VIPs aging in climatic boxes and through direct measurement of the permeance on membrane samples (manometric method). These measurements are carried out at fixed temperature and relative humidity (T = 48 °C, φ = 65 % HR), but with a total pressure ranging from 80 mbar to 1 bar. This exploratory measurement campaign shows no significant influence of the total pressure on the apparent permeability to water vapor. These results are used to draw first conclusions on the respective roles of the partial pressure and the total pressure, and suggest some outlooks to the experimental approach initiated in this study.
Identifer | oai:union.ndltd.org:theses.fr/2012ISAL0141 |
Date | 13 December 2012 |
Creators | Bouquerel, Mathias |
Contributors | Lyon, INSA, Baillis, Dominique |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0285 seconds