Return to search

Active control of a diffraction grating interferometer for microscale devices

This thesis describes the creation of a metrology system based upon an actively controlled diffraction grating interferometer, which measures relative linear distances. The dynamics of this sensor are estimated based on experimental testing, and a suitable controller is designed to maintain the position of the sensor in the most sensitive operating region. This controller is implemented on a field programmable gate array (FPGA) processor, which allows for flexible programming and real-time control.

The sample under test is mounted atop a three axis linear stage system, which allows the diffraction grating interferometer to scan across the surface of the device, creating maps of the static and dynamic measurements. The controller is shown to maintain the sensitivity of the sensor during this operation. This insures all data are taken on the same scale, creating more accurate results. The controller increases the signal to noise ratio as compared to the system without the controller.

The specifications of the entire metrology system are detailed including the sensor and controller bandwidth, the vertical and horizontal resolution, and the signal to noise ratio. A case study utilizing a capacitive micromachined ultrasonic transducer (cMUT) is presented. The sensor generates static and dynamic displacement maps of the surface of this MEMS device. The controller improves these measurements by maintaining a position of high sensitivity during operation.

Finally, the preliminary results of a miniaturized version of this system are presented including the implementation of two fully independent parallel sensors. This allows for array implementation of these sensors, which is crucial for the batch fabrication photolithography techniques used to create many MEMS devices. Recommendations on the future work needed to complete the array implementation are given in conjunction with methods for increasing the resolution and robustness of the macroscale system described in this thesis.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/7261
Date14 July 2004
CreatorsSchmittdiel, Michael C.
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeThesis
Format8780715 bytes, application/pdf

Page generated in 0.0079 seconds