Return to search

Microscope à illumination structurée par micro-miroirs pour l’étude in-vivo du cerveau de la drosophile / Micromirror structured illumination microscope for in-vivo drosophila brain imaging

Le développement des senseurs protéiques et des outils optogénétiques au cours des dernières années a donné une place particulière à la microscopie pour l’étude des processus moléculaires in-vivo. L’équipe « Nano-optique et physiologie intégrée » développe des montages optiques originaux pour exploiter ces nouveaux outils chez le petit animal vivant en collaboration avec des neurobiologistes. Nous nous intéressons en particulier à l’organisation cellulaire et à l’activité des réseaux neuronaux impliqués dans la mémorisation associative olfactive de la drosophile. En amont, mon travail de thèse a été de mettre en place un microscope grand champ, basé sur le principe de la microscopie à HiLo, permettant l’acquisition rapide de sections optiques et la reconstruction tridimensionnelle de réseaux neuronaux. Après avoir prouvé la pertinence de l’approche choisie lorsqu’elle est associée aux outils génétiques permettant un marquage sélectif des neurones, le cœur de mon travail fut le développement d’un montage original permettant d’atteindre les objectifs de résolution spatiale et de vitesse. Son originalité se situe dans l’utilisation de la technologie des matrices de micro-miroirs (DLP) pour structurer l’illumination. Ce système de micro-miroirs pilotables peut moduler le faisceau d’une source LED haute puissance à haute cadence. Dans une seconde partie, j’ai caractérisé ce microscope et réalisé de premières expériences in-vivo avec les développements spécifiques nécessaires à ces expériences. En particulier, en utilisant un rapporteur protéique calcique fluorescent, GCamP3, j’ai montré que l’on pouvait suivre, dans des régions ciblées du cerveau, la réponse à des stimulations physiologiques à cadence vidéo. / In the last decades, optogenetic and protein reporter development have given a special place to optical microscopy for in-vivo investigation of biological molecular processes. Our team, “Nano-optics and integrated physiology”, develops optical set-ups to take advantage of these tools on small living animals, in collaboration with neurobiologists. We are particularly interested both in the cellular organization and neural activity involved in the olfactory memory formation in drosophila. Upstream to these investigations, my PhD research aimed at developing a new implementation for wide-field microscopy based on the HiLo concept. The new design took advantage of the micro-mirror array technology (DLP) to structure the illumination. This system can modulate the beam made by a high power LED illumination with high acquisition rates. I characterized this microscope and realized preliminary in-vivo experiments with specific developments made for physiological experiments under the microscope. Thus, I demonstrated both high spatial resolution imaging and a tenfold increase of speed with respect to confocal microscopy. I reached acquisition rates compatible with 3D monitoring of specific neural networks.

Identiferoai:union.ndltd.org:theses.fr/2013PA112231
Date16 October 2013
CreatorsMasson, Aurore
ContributorsParis 11, Tchénio, Paul
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Image, StillImage

Page generated in 0.0021 seconds