M. Tech. (Department of Chemistry, Faculty of Applied and Computer Sciences), Vaal University of Technology / The present study includes the use of a green synthetic method to prepare copper and silver nanoparticles using chitosan, aqueous extracts of Camellia sinensis, Combretum molle and Melia azedarach linn leaves. This study aims to investigate the influence of capping and precursor concentration on the properties of silver nanoparticles with emphasis on the medicinal plants chosen. The effect of capping agent on the properties of copper nanoparticles is also investigated. The phytochemical properties of plant extracts and the antimicrobial activity of the synthesized particles were also studied; this was achieved by using microdilution bioassay. Decoction method was used to extract secondary metabolites from plant leaves. Preliminary phytochemical screening carried out on the aqueous extracts of the plant leaves showed the presence of tannins, proteins, flavonoids, phenols, and carbohydrates. The total phenolic and flavonoids content of the aqueous extract was determined using spectroscopic methods. The highest phenolic content was found in the aqueous extract of Combretum molle (135 mg/g), and the highest flavonoid content was found in the aqueous extract of Camellia sinensis (0.4 mg/g).
Characterization was done by a combination of spectroscopic, microscopy and XRD techniques. Both the size and shape of the synthesized silver nanoparticles were dependent on the identity of the capping molecule, precursor and capping agent concentration as depicted from their TEM and XRD results. Silver nanoparticles were found to be predominantly spherical. The capping agent concentration was also found to influence the degree of agglomeration, with an increase in capping agent concentration giving lesser agglomeration. FTIR spectral analysis showed that silver nanoparticles interact with bioactive compounds found in the plants through the hydroxyl functional group. Other shapes including diamond were observed for the effect of precursor concentration. The XRD micrographs revealed a face-centered cubic geometry and the phase remained the same with an increase in precursor concentration. The synthesized silver nanoparticles were all blue shifted compared to the bulk material. The TEM results revealed that copper nanoparticles with different sizes and shapes were successfully synthesized.
All the prepared copper and silver nanoparticles showed satisfactory antifungal and antibacterial activity against Candida albicans, Cryptococcus neoformans, Staphylococcus aureus, Enterococcus faecalis, Klebsiella pneumonia and Pseudomonas aeruginosa. The capping molecules used in this study also showed some antibacterial and antifungal activity against the selected strains. However nanoparticles performed better than these capping molecules. Both silver and copper nanoparticles were found to be more active against gram-negative bacteria compared to gram-positive bacteria. Amongst all the prepared silver nanoparticles Combretum molle capped nanoparticles were found to be the most active nanoparticles. Also with copper nanoparticles, it was found that Combretum molle capped nanoparticles were the most active nanoparticles. Between the two metal nanoparticles, silver nanoparticles showed high antibacterial and antifungal activity compared to copper nanoparticles.
The antioxidant activity of silver nanoparticles was assessed using 2.2-diphenyl-1-picrylhydrazyl. Silver nanoparticles were found to have some antioxidant activity. However, the capping molecules were found to be more active than the synthesized nanoparticles. This observation is attributed to the presence of some bioactive compounds in the plant extracts.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:vut/oai:digiresearch.vut.ac.za:10352/424 |
Date | 02 1900 |
Creators | Nate, Zondi |
Contributors | Moloto, Prof. Makwena Justice, Sibiya, Dr. Precious, Mubiayi, Dr. Pierre Kalenga |
Publisher | Vaal University of Technology |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0024 seconds