Return to search

Sensores eletroquímicos para detecção de íons e medida de pH baseados em filmes de silício poroso. / Electrochemical sensors to ions detection and pH measure based on porous silicon films.

O presente trabalho foi realizado com o objetivo de contribuir para o desenvolvimento tecnológico de sensores eletroquímicos utilizados na detecção de íons, especificamente, de íons de hidrogênio (H+). Na primeira parte do trabalho é descrito e discutido o estado da arte de sensores eletroquímicos de H+, principalmente de dispositivos sensíveis a íons do tipo ISFET (Transistor de Efeito de Campo Sensível a Íons). O foco principal do presente trabalho foi na proposta de fabricação e caracterização funcional de um eletrodo modificado com moléculas de azul de metileno baseado na tecnologia de silício poroso. Os resultados obtidos neste trabalho mostraram que filmes de silício macroporoso modificados com azul de metileno atuam como eletrodos de trabalho com elevada taxa de transferência de elétrons, permitindo sua aplicação em dispositivos sensores eletroquímicos associado à técnica de voltametria cíclica. Os resultados observados nos voltamogramas deste eletrodo mostraram elevada sensibilidade a mudanças de pH da solução, parâmetro associado à concentração de íons de H+. A resposta do sensor foi monitorada pela intensidade de corrente de pico e posição do potencial de pico da reação redox das moléculas de azul de metileno do eletrodo macroporoso modificado. Os eletrodos modificados com azul de metileno em filmes de silício microporoso mostraram uma elevada resistência elétrica, impossibilitando sua aplicação como sensores utilizando-se a técnica de voltametria cíclica. No entanto, devido a sua elevada superfície especifica (600 m2/cm3), estes eletrodos foram aplicados na detecção de íons através da técnica de impedância eletroquímica. Os resultados obtidos com os eletrodos de silício poroso modificado com azul de metileno abrem grandes perspectivas de aplicação em biossensores e Chips de DNA. / This work was done focused on contributing to the technologic development of electrochemical sensors employed in ions detection, specifically, hydrogen ions (H+). At the first part of the work, the H+ electrochemical sensors review is showed and discussed; mainly of the ion sensitive devices know as ISFET device (Ion Sensitive Field Effect Transistor). The work was focused in the purpose of fabrication and functional characterization of a modified electrode with methylene blue molecules based on porous silicon technology. The results obtained with this work showed that macroporous silicon films modified with methylene blue act as work electrodes with high electron transference rate, allowing their application in electrochemical sensor devices using cyclic voltammetry technique. The cyclic voltammetry experimental results of this electrode showed high sensibility to pH changes of the solution, parameter related to the H+ ion concentration. The sensor response was monitored by the intensity of peak current and peak potential position of the redox reaction of methylene blue molecules on modified porous silicon electrode. The modified electrodes with methylene blue on microporous silicon films showed a high electric resistance, making impossible their application as sensors employing the cyclic voltammetry technique. However, due to their high specific surface (600 m2/cm3), these electrodes were applied to ion detection through the electrochemical impedance technique. The results achieved with the porous silicon electrodes modified with methylene blue open great perspectives of application in biosensors and DNA Chips.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-04072007-152612
Date23 February 2007
CreatorsCechelero, Gustavo Sampaio e Silva
ContributorsSalcedo, Walter Jaimes
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0021 seconds