Les minéraux argileux sont omniprésents à la surface de la Terre. Leur forme plaquettaire et leur taille le plus souvent (sub)micrométrique en font des composants influençant, entre autres, la perméabilité et la capacité d’échange ionique des sols et des roches. L’étude des milieux poreux argileux est ainsi d’importance notamment pour l’exploitation et la préservation de ressources naturelles, le suivi de polluants ou encore le stockage de CO2. Si les propriétés physico-chimiques des surfaces argileuses contrôlent les processus d’adsorption-désorption de l’eau et des ions, la porosité et l’anisotropie du réseau poral gouvernent les processus de diffusion au sein des milieux poreux argileux. Dans ce contexte, le travail présenté dans ce mémoire de thèse se focalise sur la caractérisation de l’orientation des particules argileuses, et son influence sur l’anisotropie des propriétés de diffusion de l’eau dans le réseau poral. Une première partie de ce manuscrit regroupe des analyses systématiques de l’organisation des particules argileuses dans des milieux poreux modèles et naturels variés. Tout d’abord, une étude de milieux poreux modèles simulés et expérimentaux composés de disques sédimentés, monodisperses en taille, a mis en évidence une relation simple entre l’anisotropie d’orientation des particules et l’anisotropie de la phase porale. Puis, une étude de l’orientation préférentielle des particules argileuses dans des milieux poreux expérimentaux composés de minéraux argileux purs a été réalisée pour des compositions minéralogiques et des modes de dépôt variés. Une généralisation de la description des fonctions de distribution d’orientation des particules argileuses a été proposée et appliquée avec succès à trois milieux poreux naturels. Ces résultats visent ainsi à faciliter la prise en compte de l’orientation préférentielle des particules argileuses dans la description géométrique des milieux poreux argileux. La seconde partie de ce mémoire de thèse tente de faire le lien entre l’anisotropie de la phase solide, telle que décrite précédemment par l’orientation préférentielle des particules, et les prédictions de diffusion de l’eau dans ces milieux poreux argileux. Une première étude couplant des simulations numériques et des mesures expérimentales a été réalisée pour des milieux de kaolinite ayant des anisotropies contrastées, tout autre paramètre égal par ailleurs (porosité du milieu, taille et forme des particules). Les résultats montrent une évolution d’un facteur 2 du coefficient de diffusion de l’eau dans la direction longitudinale par rapport à l’axe de compaction et une évolution de l’anisotropie de diffusion d’une valeur de 1 (isotrope) à environ 5 (le plus anisotrope mesuré). Des mesures complémentaires ont ensuite permis d’établir une loi d’Archie modifiée prédisant le coefficient de diffusion de l’eau à partir du couple porosité/orientation des particules pour une gamme de porosité de 30 à 60%. Ces résultats visent à faciliter la prise en compte de l’orientation des particules argileuses dans les modèles de diffusion macroscopique de l’eau. En parallèle, l’influence d’un gradient de salinité et les rôles des porosités interfoliaire et interparticulaire sur la dynamique de l’eau et des ions Na+ et Cl- au sein de milieux de vermiculites (milieu chargé à double porosité) ont été analysés pour des organisations de particules connues. / Clay minerals are ubiquitous at the surface of the Earth and can influence, among other properties, the permeability and the ionic exchange properties of soils and rocks due to their platy shape and their most often (sub)micrometric size. Thus, studying clay porous media is of prime importance for different research fields such as: the exploitation and conservation of natural resources, the tracking of pollutants or CO2 storage. While the physicochemical properties of the surface of clay minerals control the adsorption-desorption mechanisms of water and ions, it is the porosity and the anisotropy of the poral network that govern diffusion phenomenon within clay porous media. In this respect, the work presented in the following doctoral thesis focuses on the characterization of clay particle orientation and its influence on anisotropic diffusion properties of water in the associated pores. A first part of this manuscript gathers systematic structural analyses of various model and natural samples. One study presents the analyze of experimental and simulated stackings made from sedimented discs with a unique particle size. Results underlined a simple correlation between the particle orientation anisotropy and the poral network anisotropy. Then, an other study was performed on experimental media made of pure clay minerals for various mineralogical compositions and various preparation methods. Based on this data, a reference function was proposed to describe the experimental orientation distribution functions and was successfully applied to three natural porous media. These results aim to facilitate and improve the description of the preferential orientation of clay particles as part of a geometrical characterization of clay porous media. A second part of this manuscript try to describe the link between the anisotropy of the solid phase, previously characterize by the particle orientation, and the prediction of water diffusion coefficients in these clay porous media. A study using both simulated and experimental media was performed on kaolinite porous media presenting contrasted anisotropy and with all other parameters held equal (porosity of the medium, size and shape of particles). Results show a variation of water diffusion coefficients with a factor 2 in the longitudinal direction, compared to the compaction axis, and an anisotropic diffusive ratio varying from 1 (isotropic) to almost 5 (most anisotropic medium analyzed). Then, complementary measures allowed establishing a modified version of Archie’s law that predicts water diffusion coefficients from the porosity/particle orientation couple for a range of porosity of 30-60%. These results aim to improve the description of the orientational anisotropy of clay particles in macroscopic diffusion models of water. Simultaneously, the influence of a salinity gradient and the roles of interparticular and interfoliar porosities are discussed for the diffusion of water, Na+, and Cl- within vermiculite media (charged media with double porosity) for known structural organizations.
Identifer | oai:union.ndltd.org:theses.fr/2019POIT2277 |
Date | 26 September 2019 |
Creators | Dabat, Thomas |
Contributors | Poitiers, Ferrage, Éric, Hubert, Fabien, Tertre, Emmanuel |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image, StillImage |
Page generated in 0.003 seconds