The present work reports on the electron–vibron coupling in large organic molecules and particularly on the intermolecular interaction in molecular condensates. The optical and electrical properties of these organic systems are in the focus of attention due to their crucial importance for the development of (hybrid) organic electronic devices. In particular, the charge transport mechanism and hence the interaction between condensed molecules is a matter of debate [1–4]. In order to shed light on this interaction, the spectroscopic signatures of isolated molecules in the gas phase and their condensed counterparts have been studied. The applied technique, near–edge x–ray absorption fine structure (NEXAFS) spectroscopy, is a local probe with high chemical selectivity, well suited for the investigation of the electronic structure of molecular valence levels [5]. In the experimental part, the experimental set–up developed in this work is described with special attention to the characteristic issues of gas phase measurements, energy calibration and the subsequent data evaluation. The high quality gas phase and solid state NEXAFS spectra are analysed with respect to energy positions, shape and intensity of the sharp pi*–resonances characteristic for these aromatic molecules. Where applicable, a detailed Franck–Condon (FC) analysis of the vibronic fine structure has been performed, yielding additional information on the changes that occur upon solid state formation. Together with former results on vibrational features in large organic molecules, this information has been used to investigate the correlation of vibrational energies in the ground and electronically excited state. We find a relatively good agreement with other empirical studies on vibronic structures in photoelectron spectroscopy (PES) spectra of small molecules [6]. The molecular compounds investigated are in general believed to interact via weak van–der–Waals forces only. The present results however reveal distinct differences between the spectra of the gas and solid phase that can not be explained within the context of a mere interaction by dispersive forces. In detail, differential red–shifts of 0.1 to 0.3eV of transitions assigned to the aromatic system have been observed in the C–K spectra of benzene–tetracarboxylic acid dianhydride (BTCDA), 1,4,5,8–naphthalene–tetracarboxylic acid dianhydride (NTCDA), and 3,4,9,10–perylene–tetracarboxylic acid dianhydride (PTCDA) upon solid state formation. From BTCDA to PTCDA the shift increases, indicating an improving intermolecular interaction with molecular size or a closer molecular packing. In contrast, all transitions assigned to the anhydride carbon atom (C1) do not show any shift. For the O–K spectra, small changes in relative intensity have been observed for BTCDA and NTCDA. In case of PTCDA, a blue–shift of up to 0.2eV is evident for the OB 1sLEMO+1 transition. Theoretical models for the intermolecular interaction have been proposed in this work, based on a change of molecular geometry and interaction of adjacent molecules in the ground and excited state, respectively. While an interaction of adjacent molecular orbitals may explain the experimental findings for one particular molecule, this model falls short for a comprehensive explanation of all three dianhydrides. For an interaction in the excited state, the excitonic coupling with the neighbours attached at an angle, quantum chemical calculations yield no significant change in peak positions for NTCDA. Unfortunately, results for the stacked neighbours as well as the larger compound PTCDA are still lacking. For tris (8–quinolinol) aluminum (Alq3), the observed peak–shifts are restricted to just one unoccupied orbital, the LEMO+2, which is mainly localised at the phenoxide side of the quinolinol ligands. Although the shifts differ for the individual edges, the main interaction can therefore be assigned to this orbital. In summary, NEXAFS spectroscopy, if performed with great care in terms of experimental details and data analysis especially for the gas phase data, provides very detailed and highly interesting data on the changes of the electronic structure of organic molecules upon condensation. The present data can be applied as a reference for further experimental and (highly desired) theoretical investigations, which are needed for a comprehensive understanding of the complex interaction mechanisms between organic molecules. / Die vorliegende Arbeit beschäftigt sich mit der Kopplung vibronischer und elektronischer Anregungen in großen organischen Molekülen. Die Mechanismen des Ladungstransportes und damit auch die zu Grunde liegende Wechselwirkung dieser Moleküle im Festkörper sind immer noch Gegenstand aktueller Diskussionen [1–4]. Mit der Untersuchung der spektroskopischen Eigenschaften von einerseits freien, also gasförmigen Molekülen, andererseits von (stark) wechselwirkenden Molekülen im Festkörper soll mit der vorliegenden Arbeit ein Beitrag zum besseren Verständnis der intermolekularen Wechselwirkung geleistet werden. Als Methode wurde die Röntgen–Nahkanten–Spektroskopie (NEXAFS) angewandt, die durch ihre chemische Selektivität lokale Informationen über die elektronische Struktur der Valenzzustände der untersuchten organischen Moleküle liefern kann [5]. Im experimentellen Teil wird eine Apparatur zur Untersuchung der organischen Moleküle in der Gasphase, die im Rahmen dieser Arbeit entwickelt wurde, vorgestellt. Das Hauptaugenmerk liegt dabei auf den Besonderheiten der Gasphasenmessungen sowie der Energiekalibrierung und anschließenden Datenauswertung. Die qualitativ hochwertigen Spektren werden nach Gesichtspunkten der energieposition, Form und Intensität der für die organischen Moleküle typischer Weise sehr scharfen pi* Resonanzen ausgewertet. Für Spektren mit gut aufgelöster Feinstruktur wurde die darunter liegende Schwingungsstruktur mit Hilfe einer Franck–Condon Auswertung untersucht, woraus sich weitere Informationen über die Einflüsse im Festkörper gewinnen ließen. Die dabei gesammelten Daten wurden zusammen mit den Ergebnissen früherer Untersuchungen der Schwingungsfeinstruktur organischer Moleküle herangezogen, um den Zusammenhang zwischen den Schwingungsenergien im elektronisch angeregten und im Grundzustand zu bestimmen. Dabei ergab sich eine gute Übereinstimmung mit empirischen Untersuchungen der Schwingungsstruktur kleiner Moleküle anhand von Photoelektronenspektroskopie (PES) [6]. Die vorliegenden Ergebnisse zeigen ausgeprägte Unterschiede in den Spektren der verschiedenen Phasen, die sichnicht im Rahmen einer Wechselwirkung durch rein dispersive Kräfte erklären lassen. Im Einzelnen traten zwischen den Gasphasen– und Festkörperspektren der C–K Kanten von 1,2,4,5–Benzoltetracarbonsäuredianhydrid BTCDA, 1,4,5,8–Naphthalintetracarbonsäuredianhydrid NTCDA und 3,4,9,10–Perylentetracarbonsäuredianhydrid PTCDA Rotverschiebungen von 0,1 bis 0,3eV auf. Die entsprechenden elektronischen Übergänge sind jeweils dem aromatischen System zugeordnet und zeigen in der Reihe von BTCDA zu PTCDA eine zunehmende Verschiebung. Dies deutet auf eine verstärkte Wechselwirkung bei größeren Molekülen, beziehungsweise bei einer dichteren Packung hin. Übergänge die dem Anhydrid Kohlenstoff (C1) zugeordnet sind, zeigen jedoch keinerlei Verschiebung. Die Spektren der O–K Kanten von BTCDA und NTCDA weisen lediglich eine leichte Veränderung der relativen Intensitäten auf. Im Falle von PTCDA wurde eine Blauverschiebung von bis zu 0,2eV für den OB 1s LEMO+1 Übergang beobachtet. In dieser Arbeit werden einige theoretische Modelle vorgeschlagen, die auf einer Änderung der Molekülgeometrie bzw. einer Wechselwirkung der Molekülorbitale sowohl im Grund– als auch im angeregten Zustand basieren. Betrachtet man lediglich eine einzelne Molekülsorte, so liefert z.B. eine Wechselwirkung der Orbitale benachbarter Moleküle eine zufriedenstellende Erklärung für die beobachteten Änderungen. Bei einer umfassenden Betrachtung aller Moleküle der Dianhydrid Gruppe scheitert dieses Modell jedoch. Erste quantenchemische Berechnungen der Wechselwirkung mittels einer exzitonischen Kopplung der NTCDA Moleküle mit ihren gewinkelten Nachbarn lieferten keine nennenswerten Verschiebungen der Resonanzenergien. Weiterführende Rechnungen dieser Art stehen jedoch für die gestapelten Nachbarn sowie für das größere PTCDA noch aus. Bei dem Molekül Tris(8-chinolinol)aluminium Alq3 lassen sich alle beobachteten Verschiebungen einem Orbital, dem LEMO+2 zuordnen. Obwohl die Verschiebungen für die verschiedenen Absorptionskanten unterschiedlich sind, lässt sich die Wechselwirkung des Moleküls somit diesem Orbital, das an der Phenolat Seite des Liganden lokalisiert ist, zuordnen. Zusammenfassend lässt sich sagen, dass die Röntgen–Nahkanten Spektroskopie hochinteressante und sehr genaue Informationen über die Änderung der elektronischen Struktur organischer Moleküle beim Übergang in die kondensierte Phase liefern kann. Die Ergebnisse dieser Arbeit können als eine Referenz für zukünftige experimentelle und theoretische Untersuchungen betrachtet werden. Für ein umfassendes Verständnis der komplexen Wechselwirkung zwischen organischen Molekülen sind diese weiteren Untersuchungen unabdingbar.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:3558 |
Date | January 2009 |
Creators | Holch, Florian |
Source Sets | University of Würzburg |
Language | English |
Detected Language | German |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0172 seconds