Return to search

Microfluidique diphasique accordable / Tunable diphasic microfluidic

Depuis ces dernières années, il y a eu augmentation de l’effort pour le développement des systèmes microfluidiques dédiésà la dispersion d’une phase fluide dans une autre phase fluide immiscible. Les gouttelettes ou les bulles résultantes ont de nombreuses applications dans des diverses domaines (photonique, chimique, biologique...). Pour la plupart de ces applications, il est primordial de contrôler la taille et la forme de ces gouttelettes/bulles, paramètres qui influencent directement le comportement ou la réponse du système. Notre but consiste ainsi à générer des gouttelettes de taille unique (mono-dispersées) et contrôlable pour produire des structures accordables. Nous analysons aussi leurs mécanismes de formation et étudions les paramètres qui influent sur leur taille et leur forme. Dans le présent travail, la génération de gouttelettes est réalisée en utilisant une intersection entre deux microcanaux (jonction en T) où leur taille est directement liée à la géométrie. Dans cette configuration, il existe trois régimes connus de génération de gouttelettes qui sont les régimes de dripping, squeezing et jetting. Nous nous sommes particulièrement intéressés à l’étude du régime dripping car il assure la génération de gouttelettes ayant une taille plus petite que celle obtenue avec les autres régimes. Les expériences et les études théoriques ont montré que le diamètre des gouttelettes diminue quand la largeur des canaux diminue, quand la vitesse de la phase continue augmente et quand la vitesse de la phase dispersée diminue. De plus, nous avons pu mettre en évidence un nouveau régime de génération de gouttelettes pour lequel les gouttelettes générées ont un diamètre constant, indépendamment des vitesses des phases continue et dispersée, et qui ne dépend que de la géométrie des canaux. Nous avons appelé ce nouveau régime le régime “balloon”. Nous avons enfin montré l’intérêt de l’accordabilité des systèmes microfluidiques en optique et en acoustique. Ainsi, nous avons montré que la période du réseau de diffraction optique est facilement modifiable en contrôlant les paramètres de génération de bulles. De même, nous avons pu voir que la réponse acoustique est liée `a la résonance des bulles dans le milieu liquide. Cette réponse est une fonction du diamètre des bulles générées. Enfin, nous proposons l’utilisation du système microfluidique en électronique pour produire des capacités variables, ouvrant la voie à des nouvelles fonctionnalités pour la microfluidique diphasique. / Since the past few years, there has been an increasing effort in developing microfluidic devices for dispersing one fluid phase in another immiscible fluid phase. Micro fluidic bubbles or droplets have many applications in different fields such as photonics, chemistry, biology... For most of these applications, it is important to control the size and the shape of these droplets or bubbles, since they directly influence the response of the system. Our goal is to generate mono disperse and controllable droplets to produce tunable structures. We also analyze their formation mechanisms and study the parameters that affect their size and their shape. In the present work, we use T-junction geometry to generate droplets of uniform size. In this configuration, there are three known regimes of droplet generation: dripping, squeezing and jetting regimes. We are particularly interested in the study of the dripping regime since it ensures the generation of droplets of smaller size compared to the other regimes. The experimental and the theoretical studies have shown that the droplets diameter decreases when the channels width decreases, when the continuous phase velocity increases and when the dispersed phase velocity decreases. In addition, we have shown evidence of a new regime of droplet generation in which the droplet diameter is constant, independent of the continuous and dispersed phases velocities and only related to the geometry of the T-junction channels. We named this new regime the balloon regime. We finally demonstrated the usefulness of the tunability of microfluidic systems in optics and acoustics. Actually, we show that the diffraction grating period can be easily changed by controlling the parameters of bubble generation. We show also that the acoustic response is related to the bubbles resonance in the liquid medium. This response is a function of the bubbles diameter. Finally, we propose the use of the microfluidic system in electronics, for realizing varying capacitors, where the diphasic microfluidic opens the way to new functionalities

Identiferoai:union.ndltd.org:theses.fr/2013BESA2016
Date18 April 2013
CreatorsTarchichi, Nathalie
ContributorsBesançon, Chollet, Franck, Manceau, Jean-François
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0019 seconds