Dans ce travail de thèse , je présente comment extraire les géométries discrètes de l'espace-temps de la formulation covariante de la gravitaté quantique à boucles, qui est appelé le formalisme de la mousse de spin. LQG est une théorie quantique de la gravité qui non-perturbativement quantifie la relativité générale indépendante d'un fond fixe. Il prédit que la géométrie de l'espace est quantifiée, dans lequel l'aire et le volume ne peuvent prendre que la valeur discrète. L'espace de Hilbert cinématique est engendré par les fonctions du réseau de spin. L'excitation de la géométrie peut être parfaitement visualisée comme des polyèdres floue qui collées à travers leurs facettes. La mousse de spin définit la dynamique de la LQG par une amplitude de la mousse de spin sur un complexe cellulaire avec un état du réseau de spin comme la frontiére. Cette thèse présente deux résultats principaux. Premièrement, la limite semi-classique de l'amplitude de la mousse de spin sur un complexe simplicial arbitraire avec une frontière est complètement étudiée. La géométrie discrète classique de l'espace-temps est reconstruite et classée par les configurations critiques de l'amplitude de la mousse de spin. Deuxièmement, la fonction de trois-point de LQG est calculé. Il coïncide avec le résultat de la gravité discrète. Troisièmement, la description des géométries discrètes de hypersurfaces nulles est explorée dans le cadre de la LQG. En particulier, la géométrie nulle est décrit par une structure singulière euclidienne sur la surface de type espace à deux dimensions définie par un feuilletage de l'espace-temps par hypersurfaces nulles. / In this thesis, I will present how to extract discrete geometries of space-time fromthe covariant formulation of loop quantum gravity (LQG), which is called the spinfoam formalism. LQG is a quantum theory of gravity that non-perturbative quantizesgeneral relativity independent from a fix background. It predicts that the geometryof space is quantized, in which area and volume can only take discrete value. Thekinematical Hilbert space is spanned by Penrose's spin network functions. The excita-tion of geometry can be neatly visualized as fuzzy polyhedra that glued through theirfacets. The spin foam defines the dynamics of LQG by a spin foam amplitude on acellular complex, bounded by the spin network states. There are three main results inthis thesis. First, the semiclassical limit of the spin foam amplitude on an arbitrarysimplicial cellular complex with boundary is studied completely. The classical discretegeometry of space-time is reconstructed and classified by the critical configurations ofthe spin foam amplitude. Second, the three-point function from LQG is calculated.It coincides with the results from discrete gravity. Third, the description of discretegeometries of null hypersurfaces is explored in the context of LQG. In particular, thenull geometry is described by a Euclidean singular structure on the two-dimensionalspacelike surface defined by a foliation of space-time by null hypersurfaces. Its quan-tization is U(1) spin network states which are embedded nontrivially in the unitaryirreducible representations of the Lorentz group.
Identifer | oai:union.ndltd.org:theses.fr/2014AIXM4027 |
Date | 21 July 2014 |
Creators | Zhang, Mingyi |
Contributors | Aix-Marseille, Rovelli, Carlo |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds