Return to search

Inkorrektheitsphänomene und Regularisierung bei der Parameterschätzung für Jump-Diffusions-Prozesse

Die Dissertation widmet sich dem inversen Problem der Bestimmung der fünf Parameter eines Jump-Diffusions-Prozesses aus einer Preistrajektorie. Numerische Rechnungen zu statistischen Standardverfahren haben gezeigt, dass Stabilitätsprobleme insbesondere dann auftreten, wenn die Parameter aus einer relativ kleinen Zahl beobachteter Assetpreise bestimmt werden. Daher untersuchen wir das Problem der Parameterschätzung in dieser Arbeit unter Einbeziehung von Methoden aus der Theorie inverser Probleme, da deren zentrales Anliegen die Analyse und Regularisierung inkorrekter und instabiler inverser Aufgaben ist. In dieser Arbeit werden Phänomene der Instabilität der Parameterbestimmung herausgearbeitet und analysiert. Hierfür leiten wir eine entsprechende nichtlineare Operatorgleichung her, die den Zusammenhang zwischen einer von den Parametern abhängigen Trajektorie des Jump-Diffusions-Prozesses und der Dichtefunktion der Returns beschreibt. Diese Operatorgleichung untersuchen wir bezüglich ihrer Korrektheit. Wir zeigen anhand einer Fallstudie mit simulierten Daten, dass bei der numerischen Lösung Inkorrektheitsphänomene auftreten, sobald die Daten mit kleinen Datenfehlern behaftet sind. Um diese Stabilitätsprobleme zu überwinden, diskutieren wir einen Multiparameter-Regularisierungszugang, bei dem zusätzlich zur Least-Squares Anpassung der empirischen Dichtefunktion die Semiinvarianten berücksichtigt werden. / This thesis deals with the inverse problem of estimating simultaneously the five parameters of a jump diffusion process based on return observations of a price trajectory. It is well known that there occur instability effects using conventional statistical methods, particularly if only a small number of data are available. Therefore we apply the theory of inverse problems for parameter estimation. We analyse the forward operator mapping the parameters to the density function of the returns with respect to well-posedness and ill-posedness of the problem. We show that there occur some ill-posedness phenomena in the parameter estimation problem in case of noisy data and illustrate the instability effect by a numerical case study. To obtain stable approximate solutions of the estimation problem, we use a multi-parameter regularization approach, where a least-squares fitting of empirical densities is superposed by a quadratic penalty term of fitted semi-invariants with weights.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:swb:ch1-200501179
Date22 September 2005
CreatorsDüvelmeyer, Dana
ContributorsTU Chemnitz, Fakultät für Mathematik, Prof. Dr. Bernd Hofmann, Prof. Dr. Bernd Hofmann, Prof. Dr. Werner Römisch, Prof. Dr. Ralf Wunderlich
PublisherUniversitätsbibliothek Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
Languagedeu
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf, text/plain, application/zip

Page generated in 0.0021 seconds