Return to search

Unsupervised multiple object tracking on video with no ego motion / Oövervakad spårning av flera objekt på video utan egorörelse

Multiple-object tracking is a task within the field of computer vision. As the name stated, the task consists of tracking multiple objects in the video, an algorithm that completes such task are called trackers. Many of the existing trackers require supervision, meaning that the location and identity of each object which appears in the training data must be labeled. The procedure of generating these labels, usually through manual annotation of video material, is highly resource-consuming. On the other hand, different from well-known labeled Multiple-object tracking datasets, there exist a massive amount of unlabeled video with different objects, environments, and video specifications. Using such unlabeled video can therefore contribute to cheaper and more diverse datasets. There have been numerous attempts on unsupervised object tracking, but most rely on evaluating the tracker performance on a labeled dataset. The reason behind this is the lack of an evaluation method for unlabeled datasets. This project explores unsupervised pedestrian tracking on video taken from a stationary camera over a long duration. On top of a simple baseline tracker, two methods are proposed to extend the baseline to increase its performance. We then propose an evaluation method that works for unlabeled video, which we use to evaluate the proposed methods. The evaluation method consists of the trajectory completion rate and the number of ID switches. The trajectory completion rate is a novel metric proposed for pedestrian tracking. Pedestrians generally enter and exit the scene for video taken by a stationary camera in specific locations. We define a complete trajectory as a trajectory that goes from one area to another. The completion rate is calculated by the number of complete trajectories over all trajectories. Results showed that the two proposed methods had increased the trajectory completion rate on top of the original baseline performance. Moreover, both proposed methods did so without significantly increasing the number of ID switches. / Spårning av flera objekt är en uppgift inom området datorseende. Som namnet angav består uppgiften av att spåra flera objekt i videon, en algoritm som slutför en sådan uppgift kallas trackers. Många av de befintliga spårarna kräver övervakning, vilket innebär att platsen och identiteten för varje objekt som visas i träningsdata måste märkas. Proceduren för att generera dessa etiketter, vanligtvis genom manuell anteckning av videomaterial, är mycket resurskrävande. Å andra sidan, till skillnad från välkända märkta uppsättningar för spårning av flera objekt, finns det en enorm mängd omärkt video med olika objekt, miljöer och videospecifikationer. Att använda sådan omärkt video kan därför bidra till billigare och mer varierande datauppsättningar. Det har gjorts många försök med oövervakad objektspårning, men de flesta förlitar sig på att utvärdera spårningsprestandan på en märkt dataset. Anledningen till detta är avsaknaden av en utvärderingsmetod för omärkta datamängder. Detta projekt utforskar oövervakad fotgängarspårning på video som tagits från en stillastående kamera under lång tid. Utöver en enkel baslinjespårare föreslås två metoder för att utöka baslinjen för att öka dess prestanda. Vi föreslår sedan en utvärderingsmetod som fungerar för omärkt video, som vi använder för att utvärdera de föreslagna metoderna. Utvärderingsmetoden består av banans slutförandegrad och antalet ID-växlar. Banans slutförandegrad är ett nytt mått som föreslås för spårning av fotgängare. Fotgängare går vanligtvis in och lämnar scenen för video tagna med en stillastående kamera på specifika platser. Vi definierar en komplett bana som en bana som går från ett område till ett annat. Färdigställandegraden beräknas av antalet kompletta banor över alla banor. Resultaten visade att de två föreslagna metoderna hade ökat graden av fullbordande av banan utöver den ursprungliga baslinjeprestandan. Dessutom gjorde båda de föreslagna metoderna det utan att nämnvärt öka antalet ID-växlar.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-321945
Date January 2022
CreatorsWu, Shuai
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2022:805

Page generated in 0.0028 seconds