Return to search

Modélisation multi-échelle et analyse expérimentale du comportement de composites à matrice thermoplastique renforcés fibres de verre sous sollicitations dynamiques modérées / Multiscale model and experimental characterization of glass fiber reinforced thermoplastic composite under dynamic loading

Le présent travail de thèse a pour objectif de développer un outil de modélisation par transition d’échelles sous forme de machine d’essais virtuels. Celle-ci, utilisée conjointement aux codes de calculs de structures, permet de déterminer le comportement anisotrope complexe de composites à matrice polypropylène chargés en fibres de verre courtes sous sollicitations dynamiques. La microstructure en cœur-peau induite par le procédé d’injection du matériau est investiguée expérimentalement par μCT. Le comportement dynamique est caractérisé pour des vitesses de déformation allant jusqu’à 200s-1 au moyen d’une une méthodologie expérimentale basée sur l’utilisation d’un joint d’amortissement et d’une optimisation des éprouvettes. Les mécanismes d’endommagement sont analysés expérimentalement par essai in situ. Ils mettent en évidence le phénomène d’endommagent prépondérant qui est la décohésion de l’interface fibre matrice. Basé sur ces résultats expérimentaux, l’approche multi échelles développée consiste en une méthode de Mori Tanaka incrémentale appliquée à une matrice élastoviscoplastique et des renforts enrobés intégrant l’évolution de l’endommagement à l’échelle mésoscopique. L’endommagement introduit dans les enrobages perturbe le transfert de charge entre la matrice et les renforts. De plus, la dépendance à la vitesse de déformation, aux orientations et aux taux de fibre du modèle sont corrélés par des essais. La machine d’essais virtuels est validée par modélisation de structures. L’outil prédictif ainsi développé prend en compte le minimum nécessaire à la description de la microstructure tout en étant fiable et pertinent dans la modélisation de composites sous sollicitations dynamiques modérées. / The current work focuses on the development of a micromechanical modeling tool in the form of a virtual test machine which, used with the structural calculation codes, allows to determine the complex anisotropic behavior of polypropylene matrix composites reinforced with short glass fibers under dynamic loading. The core-skin microstructure induced by the material injection process is investigated experimentally by μCT. The dynamic behavior is characterized for strain rates of up to 200s-1 using an experimental methodology based on the use of a damping joint and specimen optimization. The mechanisms of damage are analyzed experimentally by in situ SEM testing. They highlight the importance of the debonding phenomenon in the damage scenario. Based on these experimental results, the multiscale approach developed consists of an incremental Mori Tanaka method applied to an elastoviscoplastic matrix and coated reinforcements integrating the evolution of damage at the mesoscopic scale. The damage introduced into the coatings disturbs the load transfer between the matrix and the reinforcements. In addition, the strain rate, orientation, and fiber rate dependence of the model are correlated by testing. The virtual testing machine is validated by modeling structures. The developed predictive tool thus takes into account the minimum necessary to describe the microstructure while being reliable and relevant in the modeling of composites under moderate dynamic stress.

Identiferoai:union.ndltd.org:theses.fr/2017ENAM0062
Date22 December 2017
CreatorsAchour, Nadia
ContributorsParis, ENSAM, Meraghni, Fodil
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds