Return to search

Simulations multi-échelles de matériaux polymères / Multiscale modelling of polymers

Les matériaux polymères sont aussi bien utilisés dans des applications de la vie courante que dans des domaines de haute technologie. Ces matériaux font intervenir des échelles spatiales et temporelles variées et étendues, rendant la modélisation de leurs propriétés inaccessible avec une seule méthode. Cette thèse propose le développement d’une stratégie multi-échelle, couplant ainsi plusieurs niveaux de représentation de la matière. Le but est d’accéder aux propriétés rhéologiques d’un polymère, faisant intervenir des temps de relaxation lents, tout en conservant les caractéristiques chimiques intrinsèques à sa microstructure de façon à pouvoir établir des relations structure-propriétés. Les potentiels d’interaction de l’échelle mésoscopique sont développés à partir des configurations atomistiques. Ils permettent ensuite une reproduction quantitative de plusieurs propriétés structurales du polymère, telles que la masse volumique ou la distance bout à bout. La transférabilité des potentiels mésoscopiques a été étudiée à travers la dépendance des propriétés thermomécaniques en température, en pression et en nature du polymère. À partir de ces potentiels, des simulations hors équilibre ont permis de déterminer des grandeurs caractéristiques comme la masse d’enchevêtrement ou le module élastique. L’approche multi-échelle est étendue à l’interaction polymère-silice, dans le but d’étudier l’impact des facteurs comme le degré de confinement ou la densité de greffage sur les propriétés dynamiques et structurales des chaînes au voisinage de la surface. / Polymer materials are widely used, both for everyday applications and in high-technology products. These materials involves a wide range of time and length scales, making the modelling of their properties challenging by using only one method. This thesis focuses on the development of a multiscale strategy, combining different levels of description of the matter. The aim is to reach the rheological properties of a polymer over a large time scale, while retaining the chemical structure inherent of its microstructure. The investigation of structure-property relationships will then be facilitated. The mesoscopic potentials are developped from atomistic configurations. A quantitative reproduction of several structural properties of the polymer such as density or end to end distance is obtained. Then, the transferability of the potentials has been studied through the dependence of temperature, pressure or polymer structure on thermomechanical properties. By using these potentials, nonequilibrium simulations have been carried out to calculate the entanglement mass and the plateau modulus. The multicale approach has been extended to model the polymer-silica interaction in order to study the impact of the degree of confinement or the grafting density on the dynamical and structural properties of polymer chains close to the surface.

Identiferoai:union.ndltd.org:theses.fr/2014CLF22512
Date24 November 2014
CreatorsMaurel, Gaëtan
ContributorsClermont-Ferrand 2, Malfreyt, Patrice
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0022 seconds