Return to search

On Rules and Methods: Neural Representations of Complex Rule Sets and Related Methodological Contributions

Wo und wie werden komplexe Regelsätze im Gehirn repräsentiert? Drei empirische Studien dieser Doktorarbeit untersuchen dies experimentell. Eine weitere methodische Studie liefert Beiträge zur Weiterentwicklung der genutzten empirischen Methode. Die empirischen Studien nutzen multivariate Musteranalyse (MVPA) funktioneller Magnetresonanzdaten (fMRT) gesunder Probanden. Die Fragestellungen der methodischen Studie wurden durch die empirischen Arbeiten inspiriert. Wirkung und Anwendungsbreite der entwickelten Methode gehen jedoch über die Anwendung in den empirischen Studien dieser Arbeit hinaus.
Die empirischen Studien bearbeiten Fragen wie: Wo werden Hinweisreize und Regeln repräsentiert, und sind deren Repräsentationen voneinander unabhängig? Wo werden Regeln repräsentiert, die aus mehreren Einzelregeln bestehen, und sind Repräsentationen der zusammengesetzten Regeln Kombinationen der Repräsentationen der Einzelregeln? Wo sind Regeln verschiedener Hierarchieebenen repräsentiert, und gibt es einen hierarchieabhängigen Gradienten im ventrolateralen präfrontalen Kortex (VLPFK)? Wo wird die Reihenfolge der Regelausführung repräsentiert? Alle empirischen Studien verwenden informationsbasiertes funktionales Mapping ("Searchlight"-Ansatz), zur hirnweiten und räumlich Lokalisierung von Repräsentationen verschiedener Elemente komplexer Regelsätze.
Kernergebnisse der Arbeit beinhalten: Kompositionalität neuronaler Regelrepräsentationen im VLPFK; keine Evidenz für Regelreihenfolgenrepräsentation im VLPFK, welches gegen VLPFK als generelle Task-Set-Kontrollregion spricht; kein Hinweis auf einen hierarchieabhängigen Gradienten im VLPFK.
Die komplementierende methodische Studie präsentiert "The Same Analysis Approach (SAA)", ein Ansatz zur Erkennung und Behebung experimentspezifischer Fehler, besonders solcher, die aus Design–Analyse–Interaktionen entstehen. SAA ist für relevant MVPA, aber auch für anderen Bereichen innerhalb und außerhalb der Neurowissenschaften. / Where and how does the brain represent complex rule sets? This thesis presents a series of three empirical studies that decompose representations of complex rule sets to directly address this question. An additional methodological study investigates the employed analysis method and the experimental design. The empirical studies employ multivariate pattern analysis (MVPA) of functional magnetic resonance imaging (fMRI) data from healthy human participants. The methodological study has been inspired by the empirical work. Its impact and application range, however, extend well beyond the empirical studies of this thesis.
Questions of the empirical studies (Studies 1-3) include: Where are cues and rules represented, and are these represented independently? Where are compound rules (rules consisting of multiple rules) represented, and are these composed from their single rule representations? Where are rules from different hierarchical levels represented, and is there a hierarchy-dependent functional gradient along ventro-lateral prefrontal cortex (VLPFC)? Where is the order of rule-execution represented, and is it represented as a separate higher-level rule? All empirical studies employ information-based functional mapping ("searchlight" approach) to localise representations of rule set features brain-wide and spatially unbiased.
Key findings include: compositional coding of compound rules in VLPFC; no order information in VLPFC, suggesting VLPFC is not a general controller for task set; evidence against the hypothesis of a hierarchy-dependent functional gradient along VLPFC.
The methodological study (Study 4) introduces "The Same Analysis Approach (SAA)". SAA allows to detect, avoid, and eliminate confounds and other errors in experimental design and analysis, especially mistakes caused by malicious experiment-specific design-analysis interactions. SAA is relevant for MVPA, but can also be applied in other fields, both within and outside of neuroscience.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/21515
Date20 November 2019
CreatorsGörgen, Kai
ContributorsHaynes, John-Dylan, Blankertz, Benjamin, Blankenburg, Felix
PublisherHumboldt-Universität zu Berlin
Source SetsHumboldt University of Berlin
LanguageEnglish
Detected LanguageEnglish
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf
Rights(CC BY-NC-ND 3.0 DE) Namensnennung - Nicht-kommerziell - Keine Bearbeitung 3.0 Deutschland, http://creativecommons.org/licenses/by-nc-nd/3.0/de/
Relation10.1093/cercor/bhr200, 10.1523/jneurosci.2344-12.2012, 10.1523/jneurosci.3088-16.2017, 10.1016/j.neuroimage.2017.12.083

Page generated in 0.0028 seconds