Return to search

Functional analysis of genomic variations associated with emerging artemisinin resistant P. falciparum parasite populations and human infecting piroplasmida B. microti / Analyse fonctionnelle des variations du génome au sein de populations de P. falciparum résistantes à l’artémisinine et chez le piroplasme responsable de la babésiose humaine B. microti

Le programme d’élimination du paludisme de l’OMS est menacé par l’émergence etla propagation potentielle de parasites de l’espèce Plasmodium falciparum résistants à l’artémisinine. Récemment il a été montré que (a) des SNPs dans une région du chromosome 13 subissaient une forte sélection positive récente au Cambodge,(b) plusieurs sous-populations de parasites de P. falciparum résistants et sensibles à l’artémisinine étaient présentes au Cambodge, (c) des mutations dans le domaine Kelch du gène k13 sont des déterminants majeurs de la résistance à l’artémisinine dans la population parasitaire cambodgien et (d) des parasites de sous-populations du nord du Cambodge près de la Thaïlande et du Laos sont résistants à la méfloquine et portent l’allèle R539T du gène de k13.Il est donc nécessaire d’identifier la base génétique de la résistance dans le but de surveiller et de contrôler la transmission de parasites résistants au reste du monde, pour comprendre le métabolisme des parasites et pour le développement de nouveaux médicaments. Ce travail a porté sur la caractérisation de la structure de la population de P. falciparum au Cambodge et la description des propriétés métaboliques des sous-populations présentes ainsi que des flux de gènes entre ces sous-populations. Le but est d’identifier les bases génétiques associées à la transmission et l’acquisition de résistance à l’artémisinine dans le pays.La première approche par code-barre a été développée pour identifier des sous-populations à l’aide d’un petit nombre de loci. Une approche moléculaire de PCR-LDR-FMA multiplexée et basée sur la technologie LUMINEX a été mise au point pour identifier les SNP dans 537 échantillons de sang (2010 - 2011) provenant de 16centres de santé au Cambodge. La présence de sous-populations le long des frontières du pays a été établie grâce à l’analyse de 282 échantillons. Les flux de gènes ont été décrits à partir des 11 loci du code-barre. Le code-barre permet d’identifier les sous-populations de parasites associées à la résistance à l’artémisinine et à la méfloquine qui ont émergé récemment.La seconde approche de caractérisation de la structure de la population de P.falciparum au Cambodge a été définie sur la base de l’analyse de 167 génomes de parasites (données NGS de 2008 à 2011) provenant de quatre localités au Cambodge et récupérés à partir de la base de données ENA. Huit sous-populations de parasites ont pu être décrites à partir d’un jeu de 21257 SNPs caractérisés dans cette étude. La présence de sous-populations mixtes de parasite apparait comme un risque majeur pour la transmission de la résistance à l’artémisinine. L’analyse fonctionnelle montre qu’il existe un fond génétique commun aux isolats dans les populations résistantes et a confirmé l’importance de la voie PI3K dans l’acquisition de la résistance en aidant le parasite à rester sous forme de stade anneau.Nos résultats remettent en question l’origine et la persistance des sous-populations de P. falciparum au Cambodge, fournissent des preuves de flux génétique entre les sous-populations et décrivent un modèle d’acquisition de résistance à l’artémisinine.Le processus d’identification des SNPs fiables a été ensuite appliqué au génome de Babesia microti. Ce parasite est responsable de la babésiose humain (un syndrome de type malaria) et est endémique dans le nord-est des Etats-Unis. L’objectif était de valider la position taxonomique de B. microti en tant que groupe externe aux piroplasmes et d’améliorer l’annotation fonctionnelle du génome en incluant la variabilité génétique, l’expression des gènes et la capacité antigénique des protéines. Nous avons ainsi identifié de nouvelles protéines impliquées dans les interactions hôte-parasite. / The undergoing WHO Malaria elimination program is threatened by the emergenceand potential spread of the Plasmodium falciparum artemisinin resistant parasite.Recent reports have shown (a) SNPs in region of chromosome 13 to be understrong recent positive selection in Cambodia, (b) presence of P. falciparum parasiteresistant and sensitive subpopulations in Cambodia, (c) the evidence that mutationsin the Kelch propeller domain of the k13 gene are major determinants ofartemisinin resistance in Cambodian parasite population and (d) parasite subpopulations in Northern Cambodia near Thailand and Laos with mefloquine drugresistance and carrying R539T allele of the k13 gene.Identifying the genetic basis of resistance is important to monitor and control thetransmission of resistant parasites and to understand parasite metabolism for the development of new drugs. This thesis focuses on analysis of P. falciparum population structure in Cambodia and description of metabolic properties of these subpopulations and gene flow among them. This could help in identifying the genetic evidence associated to transmission and acquisition of artemisinin resistance over the country.First, a barcode approach was used to identify parasite subpopulations using smallnumber of loci. A mid-throughput PCR-LDR-FMA approach based on LUMINEXtechnology was used to screen for SNPs in 537 blood samples (2010 - 2011) from 16health centres in Cambodia. Based on successful typing of 282 samples, subpopulations were characterized along the borders of the country. Gene flow was described based on the gradient of alleles at the 11 loci in the barcode. The barcode successfully identifies recently emerging parasite subpopulations associated to artemisinin and mefloquine resistance.In the second approach, the parasite population structure was defined based on167 parasite NGS genomes (2008 - 2011) originating from four locations in Cambodia,recovered from the ENA database. Based on calling of 21257 SNPs, eight parasite subpopulations were described. Presence of admixture parasite subpopulation couldbe supporting artemisinin resistance transmission. Functional analysis based on significant genes validated similar background for resistant isolates and revealed PI3K pathway in resistant populations supporting acquisition of resistance by assisting the parasite in ring stage form.Our findings question the origin and the persistence of the P. falciparum subpopulations in Cambodia, provide evidence of gene flow among subpopulations anddescribe a model of artemisinin resistance acquisition.The variant calling approach was also implemented on the Babesia microti genome.This is a malaria like syndrome, and is endemic in the North-Eastern USA. Theobjective was to validate the taxonomic position of B. microti as out-group amongpiroplasmida and improve the functional genome annotation based on genetic variation, gene expression and protein antigenicity. We identified new proteins involved in parasite host interactions.

Identiferoai:union.ndltd.org:theses.fr/2016MONTT073
Date28 September 2016
CreatorsDwivedi, Ankit
ContributorsMontpellier, Cornillot, Emmanuel, Reynes, Christelle
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds