Preclinical results support the use of N-methyl D-aspartate receptor (NMDAR) modulators for cognition enhancement therapeutics. Pregnenolone sulfate (PregS) is a neuroactive steroid derived from cholesterol that augments long term potentiation (LTP) in hippocampal slices and improves memory performance in rats and mice. At micromolar concentrations, PregS is a subtype selective positive allosteric modulator of NMDARs at NR2A and NR2B containing receptors, and at concentrations ranging from pM - nM induces NMDAR-dependent dopamine release in the striatum and from striatal synaptosomes. In this report, we observe that micromolar [PregS] induces an increase in levels of neuronal intracellular calcium ([Ca^2+]i) and surface NMDARs in cortical neurons. Moreover, our results show that PregS stimulated upregulation of surface NR1 subunits in cortical neurons is dependent on NMDARs but independent of channel activity. As PregS has been detected in brain at bulk concentrations of 0.1 nM to 5 nM, we asked whether low, picomolar concentrations of PregS might alter [Ca^2+] levels. We report here that PregS increases [Ca^2+]i signal in cortical neurons in a voltage-gated Na^+ channel and NMDAR-NR2B dependent manner with an EC50 of ~2 pM, at least 6 orders of magnitude higher affinity than its rapid potentiating effect upon the NMDAR-mediated ionotropic response, and within the range of PregS detected in bulk brain tissue. Additionally, calcium (Ca^2+) activation of cyclic AMP response element binding protein (CREB) is critical to the protein synthesis-dependent component of LTP and important in associated behavioral measures of learning and memory. Increased [Ca^2+]i levels are known to induce CREB activation and we now show that 50 pM PregS induces a 44 ± 13% increase in the ratio of pCREB to total CREB that is dependent upon ERK signaling and canonical excitatory synaptic transmission: this includes voltage gated Na+ channels, NMDARs, and voltage-gated Ca^2+ channel activation. The results taken together indicate that PregS may be a useful platform for the development of high-affinity positive modulators of NMDAR-signaling that can be used as cognitive enhancers to treat a variety of neurological disorders: such as Alzheimer's disease, Parkinson's disease, and schizophrenia.
Identifer | oai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/15222 |
Date | 12 March 2016 |
Creators | Smith, Conor C. |
Source Sets | Boston University |
Language | en_US |
Detected Language | English |
Type | Thesis/Dissertation |
Page generated in 0.0143 seconds