Return to search

Matériaux à base de nanocristaux semi-conducteurs de chalcopyrite pour la conversion thermoélectrique / Semiconducting chalcopyrite nanocrystals based materials for thermoelectric conversion

Cette thèse présente l’étude de nanocristaux semi-conducteurs pour leur intégration dans des dispositifs de conversion thermoélectrique. Ce phénomène permet de générer un courant à partir d’une différence de température entre deux faces, reliées par deux pieds conducteurs de charges. Les matériaux les plus efficaces à température ambiante sont basés sur le tellurure de bismuth Bi2Te3, qui est toxique et coûteux. Une étude théorique et bibliographique, portant sur les grandeurs caractéristiques de la conversion thermoélectrique, est réalisée. Elle permet de déterminer les matériaux d’intérêt en fonction de leur coût et de leur efficacité, que l’on peut optimiser à travers différents paramètres d’influence. La chalcopyrite, CuFeS2, présente des propriétés intéressantes en thermoélectricité, et offre une alternative intéressante aux matériaux classiques, car composée d’éléments abondants et non-toxiques. La synthèse par voie chimique choisie permet de contrôler la composition du matériau, et d’obtenir des nanocristaux de taille contrôlée entre 30 et 50 nm, pour diffuser les phonons dans le matériau et diminuer sa conductivité thermique. La thèse s’oriente autour de l’étude de ces nanocristaux semi-conducteurs de CuFeS2, organisée en deux parties principales.La première partie décrit la synthèse par voie chimique des nanocristaux et leur étude structurale. Deux méthodes de synthèse sont optimisées et permettent de contrôler finement la stœchiométrie du matériau, et d’accéder à des cristaux de différentes tailles et morphologies. Une étude complète de la composition des nanocristaux est réalisée par XPS, EDX et thermogravimétrie. L’étude du matériau par diffraction des rayons X met en évidence l’influence de la composition chimique des nanocristaux, et des conditions de température et de pression sur la phase cristalline du matériau. Une transition de phase de la wurtzite vers la chalcopyrite est décrite.Dans la seconde partie sont étudiées les propriétés thermoélectriques des nanocristaux synthétisés. Leur mise en forme en pieds thermoélectriques monolithiques est décrite, ainsi que l’optimisation de leurs propriétés thermoélectriques à travers trois stratégies. Le matériau obtenu est un conducteur de type n, qui permet la conduction des électrons. Sa conductivité thermique est réduite par nanostructuration. La première stratégie consiste à faire varier la composition des nanocristaux, et plus particulièrement le rapport entre charges cationiques et anioniques, pour modifier le taux de dopage du matériau, et ainsi modifier sa conductivité électrique et son coefficient Seebeck. La seconde voie d’amélioration consiste à remplacer les ligands isolants présents après la synthèse des nanocristaux par des ligands courts et conducteurs, pour augmenter la conductivité électrique du matériau. Enfin, des nanoparticules métalliques d’argent, d’étain et de cuivre sont introduites en mélange avec les nanocristaux afin d’augmenter la conductivité électrique du matériau nanocomposite ainsi créé.Cette thèse apporte des éléments de compréhension entre la structure et la composition de matériaux ternaires et leurs propriétés thermoélectriques, et permet d’envisager une amélioration de leurs performances. Les matériaux optimisés présentent des efficacités comparables aux résultats de la littérature pour cette famille de matériaux, notamment autour de la température ambiante. A travers une combinaison efficace des facteurs d’influence étudiés, ces efficacités pourront être dépassées lors de futurs travaux, et le matériau intégré à un dispositif de conversion thermoélectrique couplé à une cellule photovoltaïque, pour la conversion de l’énergie solaire par les deux phénomènes. / This thesis presents the studies made on semiconducting nanocrystals, to be integrated in thermoelectric generators. Thermoelectricity generates a current through a temperature difference between two faces, connected by thermoelectric legs which conduct the charges. Nowadays, the most efficient materials at room temperature contains tellurium, which is toxic and expansive due to its scarcity. A study on theory and literature is carried to understand the underlying phenomena which help us explain the thermoelectric conversion. The potentially interesting materials are selected for their cost and efficiency, tunable by varying different parameters. Chalcopyrite, of formula CuFeS2, presents promising properties for thermoelectricity, and offers an interesting way to replace classic materials as a non-toxic earth-abundant substitute. The chemical synthesis allows to control the composition of the material and to obtain 30 to 50 nm sized nanocrystals, able to scatter phonons and diminish the thermal conductivity of the material as a consequence. The thesis is describing the study of these semiconducting CuFeS2 nanocrystals, and is divided in two main parts.The first part describes the chemical synthesis of the nanocrystals and the characterization of their structure. Two ways of synthesis are developed and optimized, allowing to control the stoichiometry of the material, and to obtain crystals of different sizes and shapes. A complete study of the composition of the nanocrystals is made by XPS, EDX and thermogravimetric analysis. The study of the material by X-ray diffraction shows that the chemical composition of the nanocrystals, as well as the temperature and the pressure, have an influence on their crystalline phase. A phase transition from the wurtzite phase to the chalcopyrite phase is described.In the second part, are studied the thermoelectric properties of the nanocrystals. Their preparation as solid materials is described. The improvement made on their efficiency is following three main paths. The obtained material is a n type conductor, which means it carries electrons. Its thermal conductivity is reduced due to the nanostructuration. The first strategy consists in varying the composition of the nanocrystals, and especially the ratio between positive and negative charges, carried by ions, to modify the electrical conductivity and Seebeck coefficient of the material through doping. The second way of improvement is by replacing the native insulating ligands of the nanocrystals by short inorganic conducting ones, to increase the electrical properties of the material. Finally, metallic nanoparticles, of silver, tin and copper, are blended with the nanocrystals to improve the electrical conductivity of the resulting nanocomposite material.This thesis helps one to understand the relation between structure, composition and thermoelectrical properties of ternary semiconducting materials. It is possible to think of ways of improvement for the studied materials. Our best results are state of the art for this family of materials, especially around room temperature. There is room for improvement, with a proper combination of the studied parameters. During a future work, the optimized material could be integrated to a thermoelectric - photovoltaic device, for conversion of the solar energy through the two phenomena.

Identiferoai:union.ndltd.org:theses.fr/2017GREAV002
Date27 January 2017
CreatorsVaure, Louis
ContributorsGrenoble Alpes, Chenevier, Pascale
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0028 seconds