Photonic cavities are able to confine light to a volume of the order of wavelength of light and this ability can be described in terms of the cavity’s quality factor, which in turn, is proportional to the confinement time in units of optical period. This property of the photonic cavities have been found to be very useful in cavity quantum electrodynamics, for e.g., controlling emission from strongly coupled single photon sources like quantum dots. The smallest possible mode volume attainable by a dielectric cavity, however, poses a limit to the degree of coupling and therefore to the Purcell effect. As metal nanoparticles with plasmonic properties can have mode volumes far below the diffraction limit of light, these can be used to achieve stronger coupling, but the lossy nature of the metals can result in extremely poor quality factors. Hence a hybrid approach, where a high-quality dielectric cavity is combined with a low-quality metal nanoparticle, is being actively pursued. Such structures have been shown to have the potential to preserve the best of both worlds.
This thesis describes the design, fabrication and characterization of hybrid plasmonic – photonic nanobeam cavities. Experimentally, we were able to achieve a quality factor of 1200 with the hybrid approach, which suggests that the results are promising for future single photon emission studies. It was found that modeling the behaviour (resonant frequencies, quality factors) of these hybrid cavities with conventional computation methods like FDTD can be tedious, for e.g., a comprehensive study of the electromagnetic fields inside a hybrid photonic nanobeam cavity has been found to take up to 48 hours with FDTD. Hence, we also present an alternate method of analysis using perturbation theory, showing good agreement with FDTD. / Graduate
Identifer | oai:union.ndltd.org:uvic.ca/oai:dspace.library.uvic.ca:1828/4313 |
Date | 07 1900 |
Creators | Mukherjee, Ishita |
Contributors | Gordon, Reuven |
Source Sets | University of Victoria |
Language | English, English |
Detected Language | English |
Type | Thesis |
Rights | Available to the World Wide Web |
Page generated in 0.0022 seconds