Return to search

Prussian White In Sodium- Ion Batteries : An evaluation of organic and inorganic coatings on active material particles

Emerging markets in electrochemical energy storage, such as stationary grid storage, coupled with future concerns over the availability of lithium, places sodium-ion battery (SIB) technologies at a unique position to enter the market as a commercially viable alternative. Current shortcomings in the performance of cathode materials in SIBs would necessarily need to be addressed if this technology is to compete with existing commercial lithium-ion battery counterparts. Prussian White (PW), a promising cathode material currently being produced by Altris AB in Uppsala, Sweden, has been shown in many regards to be a promising candidate as a cathode material. In efforts to improve the lifetime, thermal stability, and rate capability of the material, both zinc oxide (ZnO) and polyaniline (PANI) coatings were applied to the active material powder.  Scanning electron microscopy (SEM) images of the ZnO coated PW showed that the ZnO was concentrated to certain regions, resulting in a rough and compromised coating. Furthermore, the notable presence of iron 2p orbital peaks in XPS spectra for ZnO and PANI coated samples, together with the SEM images, suggests that no method resulted in a conformal coating. Crystallographic information obtained using a capillary X-ray diffractometer showed that the PANI coating process had caused the PW to transition from a monoclinic to a cubic structure. This phase transition, based on subsequent thermogravimetric analysis, is attributed to an increase in both interstitial and lattice water content.  A comparative analysis of particle size and morphology, before and after slurry homogenization, showed that the ball milling technique used resulted in a reduction in size. Moreover, the ball milling process affected the uncoated PW more than the ZnO coated PW.  Findings, based on galvanostatic cycling of both full and half cells, indicate that the ZnO coating method on average results in a 12 mAh g1 loss in discharge capacity. The PANI coated PW showed a drop in capacity of approximately half that of the uncoated reference samples. No significant differences were observed in capacity retention, coulombic efficiency, and thermal stability between ZnO coated and uncoated PW. The better rate capability of the uncoated PW is suggested to be a result of the smaller particle size. Explanations for the observed similarities in electrochemical performance include (i) the breaking up of particles and agglomerates during the ball milling process (exposing uncoated faces), and (ii) the compromised coating. / Framväxande marknader inom elektrokemisk energilagring, såsom stationär nätlagring, i kombination med framtida oro över tillgängligheten av litium, placerar natriumjonbatteriteknik (SIB) i en unik position för att komma in på marknaden som ett kommersiellt lönsamt alternativ. Nuvarande brister i prestanda av katodmaterial i SIB måste nödvändigtvis åtgärdas om denna teknik ska konkurrera med befintliga kommersiella litiumjonbatterier. Prussian White (PW), ett lovande katodmaterial som produceras av Altris AB i Uppsala, Sverige, har i många avseenden visat sig vara en lovande kandidat som katodmaterial. I försök att förbättra materialets livslängd, termiska stabilitet och cyklingshastighetsförmåga applicerades både zinkoxid (ZnO) och polyanilin (PANI) -beläggningar på PW.  Svepelektronmikroskopi (SEM) -bilder av den ZnO-belagda PW visade att ZnO koncentrerades till vissa regioner, vilket resulterade i en grov och komprimerad beläggning. Vidare antyder närvaron av järn 2p orbitaltoppar i XPS-spektra för ZnO- och PANI-belagda prover, tillsammans med SEM-bilderna, att ingen metod resulterade i en lyckad beläggning. Kristallografisk information erhållen med användning av en kapillär röntgendiffraktometer visade att PANI-beläggningsprocessen hade orsakat en fasomvandling från en monoklinisk till en kubisk struktur. Denna fasomvandling, baserad på efterföljande termogravimetrisk analys, tillskrivs en ökning av både interstitiellt och gittervatteninnehåll.  En jämförande analys av partikelstorlek och morfologi före och efter homogenisering visade att den använda kulkvarnstekniken resulterade i en minskning i storlek. Dessutom påverkade kulkvarnsprocessen den obelagda PW mer än den ZnO-belagda PW.  Resultat, baserade på galvanostatisk cykling av både hel- och halvceller, indikerar att ZnO-beläggningsmetoden i genomsnitt resulterar i en 12 mAh g-1-förlust i urladdningskapacitet. Den PANI-belagda PW uppvisade en minskning i kapacitet på ungefär hälften av de obelagda referensproverna. Inga signifikanta skillnader observerades i kapacitetsretention, coulombisk effektivitet och termisk stabilitet mellan ZnO-belagd och obelagd PW. Den bättre hastighetsförmågan hos obelagd PW föreslås vara ett resultat av den mindre partikelstorleken. Förklaringar för de observerade likheterna i elektrokemisk prestanda innefattar (i) uppbrytning av partiklar och agglomerat under kulfräsningsprocessen (exponering av obelagda ytor) och (ii) ofullständig beläggning.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-304330
Date January 2021
CreatorsJansson, Philip
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2021:615

Page generated in 0.0018 seconds