Return to search

Trisluoksnės skirtuminės schemos parabolinei lygčiai su integraline sąlyga spręsti / Tree-layer difference scheme for solution of parabolic equation with integral condition

Magistriniame darbe tiriama trisluoksnė skirtuminė schema parabolinei lygčiai su integraline sąlyga. Aprašomi metodai skaitiniai diferencialinių kraštinių uţdavinių su nelokaliosiomis sąlygomis. Atlikto magistrinio darbo rezultatas papildo iki šiol kitų mokslininkų gautus rezultatus tiriant trisluoksnę skirtuminę schemą. Magistro darbą sudaro: įvadas, uţdavinio formulavimas, 4 pagrindinės dalys, uždavinio sprendimas bei išvados. Įvadiniame skyriuje aptariamas temos aktualumas ir darbo tikslas, nurodomi naudojamo tyrimo metodai. Antrajame skyriuje suformuluojamas diferencialinis ir skirtuminis uždavinys su nelokaliąja integraline sąlyga. Trečiajame skyriuje užrašoma trisluoksnė schema kanoniniu pavidalu. Ketvirtajame skyriuje suvedame trisluoksnę schemą į dvisluoksnę. Penktajame skyriuje pateikiamas neišreikštinių skirtuminių lygčių algoritmas. Šeštajame nagrinėjama išreikštinė trisluoksnė schema bei jos algoritmas. Septintajame skyriuje tiriame matricos spektro struktūrą. Aštuntajame sprendžiamas konkretus uždavinys. Pateikiamos viso darbo bendrosios išvados. / In this master thesis there was investigated difference scheme for parabolic equation with integral condition. Numerical methods for solution differential boundary value problem nonlocal conditions methods investigated. Results of this completed work supplements by other scientists until now received results of investigation of three- layer difference scheme. Master thesis consists of introduction, problem formulation, four main chapter, numerical experiment and conclusions. Introductory chapter discusses relevance of the topic and the goal of this work, specifies methods that were used for this investigation. The second chapter formulates the differential task with nonlocal integral condition. In the third chapter is written a three- layer scheme in canonical form. In the fourth chapter the three-layer scheme reduce to the two-layers scheme. The fifth chapter presens the algorithm of realization of impicit scheme. The sixth chapter presents explicit three-layer scheme. The seventh chapter studies the structure of the matrix spectrum. There are presented all the general conclusions of the work.

Identiferoai:union.ndltd.org:LABT_ETD/oai:elaba.lt:LT-eLABa-0001:E.02~2014~D_20140611_153535-55131
Date11 June 2014
CreatorsZdanytė, Vaida
ContributorsSapagovas, Mifodijus, Štikonas, Artūras, Vytautas Magnus University
PublisherLithuanian Academic Libraries Network (LABT), Vytautas Magnus University
Source SetsLithuanian ETD submission system
LanguageLithuanian
Detected LanguageEnglish
TypeMaster thesis
Formatapplication/pdf
Sourcehttp://vddb.library.lt/obj/LT-eLABa-0001:E.02~2014~D_20140611_153535-55131
RightsUnrestricted

Page generated in 0.0017 seconds