Return to search

Hiperbolinės lygties su nelokaliosiomis kraštinėmis sąlygomis skirtuminio sprendinio stabilumas / On the stability of an explicit difference scheme for hyperbolic equation with integral conditions

Darbo tikslas — ištirti baigtiniu skirtumu metodo antrosios eiles hiperbolinio tipo diferencialinei lygciai su nelokaliosiomis integralinemis kraštinemis salygomis stabiluma. Siekiant numatyto tikslo buvo sprendžiami šie uždaviniai: • išnagrinetas antrosios eiles hiperbolines lygties trisluoksnes skirtumines schemos suvedimas i dvisluoksne skirtumine schema; • išanalizuotas skirtuminio operatoriaus perejimo matricos spektras; • gauta pakankamoji skirtumines schemos stabilumo salyga, nusakoma nelokaliuju salygu parametrais; • atlikti skaitiniai eksperimentai, patvirtinantys teorines išvadas. Nurodyta stabilumo salyga yra esmine, sprendžiant hiperbolinio tipo uždavinius su pakankamai didelemis T reikšmemis. Skirtuminio operatoriaus perejimo matricos spektro tyrimo metodika gali buti pritaikyta placios klases diferencialiniu lygciu su nelokaliosiomis salygomis stabilumui tirti. / On the stability of an explicit difference scheme for hyperbolic equation with integral conditions. The aim of the work is stability analysis of solution of finite difference method for hyperbolic equations. Trying to achieve formulated aim these tasks were solved: • a method of transformation of three-layered finite difference scheme into two-layered one was investigated; • a spectrum of transition matrix subject to the properties of second order differential operator Lambda was studied; • stability conditions of hyperbolic type equations with nonlocal conditions subject to boundary parameters were obtained; • numerical experiments, confirming theoretical derivations were made. Derived results could be used to solve one-dimensional tasks with hyperbolic equations in different sciences, to analyse spectrum structure of mathematical models and construct new numerical methods for solving hyperbolic PDEs.

Identiferoai:union.ndltd.org:LABT_ETD/oai:elaba.lt:LT-eLABa-0001:E.02~2012~D_20140704_175149-44355
Date04 July 2014
CreatorsNovickij, Jurij
ContributorsIvanauskas, Feliksas, Vilnius University
PublisherLithuanian Academic Libraries Network (LABT), Vilnius University
Source SetsLithuanian ETD submission system
LanguageLithuanian
Detected LanguageEnglish
TypeMaster thesis
Formatapplication/pdf
Sourcehttp://vddb.library.lt/obj/LT-eLABa-0001:E.02~2012~D_20140704_175149-44355
RightsUnrestricted

Page generated in 0.0024 seconds